Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic
A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2019-07, Vol.13 (5), p.2203-2228 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2228 |
---|---|
container_issue | 5 |
container_start_page | 2203 |
container_title | Complex analysis and operator theory |
container_volume | 13 |
creator | Bhat, M. Younus |
description | A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in
L
2
(
R
)
was considered by Gabardo and Nashed (J Funct Anal 158:209–241,
1998
). In this setting, the associated translation set is a spectrum
Λ
which is not necessarily a group nor a uniform discrete set, given
Λ
=
0
,
r
/
N
+
2
Z
,
where
N
≥
1
(an integer) and
r
is an odd integer with
1
≤
r
≤
2
N
-
1
such that
r
and
N
are relatively prime and
Z
is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space
l
2
(
λ
)
and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum. |
doi_str_mv | 10.1007/s11785-018-0813-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2254571350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254571350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeA5-jMJrtJjlJtFYp6UDwuk81Gt6TZupsW_PfdEtGTp5mB997wPsYuEa4RoLgJiEUpUsAyhRKzVB6xCUqJacklP_7dRX7KzkJYAUgoqmrCFk-u3_a2dX6d3NmgvRlM8k4705khJK5Plk5Tl8yt6Zp4t8mLC3awO5PMPsmTHoy3YbD6nJ201AVz8TOn7G1-_zp7SJfPi8fZ7TLVGcohbSgDKnVbGeIkpcyqouYGpJA5Aa-pzAQInqMGQSCpqTVJzDU2BmuZC55N2dWYu_Hua2vCoFZu6_v4UvHYThQYE6IKR5X2LgRvWrXxdk3-WyGoAy818lKRlzrwUjJ6-OgJUdt_GP-X_L9pDyNtbM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254571350</pqid></control><display><type>article</type><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bhat, M. Younus</creator><creatorcontrib>Bhat, M. Younus</creatorcontrib><description>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in
L
2
(
R
)
was considered by Gabardo and Nashed (J Funct Anal 158:209–241,
1998
). In this setting, the associated translation set is a spectrum
Λ
which is not necessarily a group nor a uniform discrete set, given
Λ
=
0
,
r
/
N
+
2
Z
,
where
N
≥
1
(an integer) and
r
is an odd integer with
1
≤
r
≤
2
N
-
1
such that
r
and
N
are relatively prime and
Z
is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space
l
2
(
λ
)
and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-018-0813-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Hilbert space ; Integers ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Subspaces ; Wavelet analysis</subject><ispartof>Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2203-2228</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</citedby><cites>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-018-0813-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-018-0813-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhat, M. Younus</creatorcontrib><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in
L
2
(
R
)
was considered by Gabardo and Nashed (J Funct Anal 158:209–241,
1998
). In this setting, the associated translation set is a spectrum
Λ
which is not necessarily a group nor a uniform discrete set, given
Λ
=
0
,
r
/
N
+
2
Z
,
where
N
≥
1
(an integer) and
r
is an odd integer with
1
≤
r
≤
2
N
-
1
such that
r
and
N
are relatively prime and
Z
is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space
l
2
(
λ
)
and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Hilbert space</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Subspaces</subject><subject>Wavelet analysis</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLeA5-jMJrtJjlJtFYp6UDwuk81Gt6TZupsW_PfdEtGTp5mB997wPsYuEa4RoLgJiEUpUsAyhRKzVB6xCUqJacklP_7dRX7KzkJYAUgoqmrCFk-u3_a2dX6d3NmgvRlM8k4705khJK5Plk5Tl8yt6Zp4t8mLC3awO5PMPsmTHoy3YbD6nJ201AVz8TOn7G1-_zp7SJfPi8fZ7TLVGcohbSgDKnVbGeIkpcyqouYGpJA5Aa-pzAQInqMGQSCpqTVJzDU2BmuZC55N2dWYu_Hua2vCoFZu6_v4UvHYThQYE6IKR5X2LgRvWrXxdk3-WyGoAy818lKRlzrwUjJ6-OgJUdt_GP-X_L9pDyNtbM0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bhat, M. Younus</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><author>Bhat, M. Younus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Hilbert space</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Subspaces</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, M. Younus</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, M. Younus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>2203</spage><epage>2228</epage><pages>2203-2228</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in
L
2
(
R
)
was considered by Gabardo and Nashed (J Funct Anal 158:209–241,
1998
). In this setting, the associated translation set is a spectrum
Λ
which is not necessarily a group nor a uniform discrete set, given
Λ
=
0
,
r
/
N
+
2
Z
,
where
N
≥
1
(an integer) and
r
is an odd integer with
1
≤
r
≤
2
N
-
1
such that
r
and
N
are relatively prime and
Z
is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space
l
2
(
λ
)
and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-018-0813-6</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8254 |
ispartof | Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2203-2228 |
issn | 1661-8254 1661-8262 |
language | eng |
recordid | cdi_proquest_journals_2254571350 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Analysis Hilbert space Integers Mathematics Mathematics and Statistics Operator Theory Subspaces Wavelet analysis |
title | Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20Discrete%20Wavelets%20on%20Local%20Fields%20of%20Positive%20Characteristic&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Bhat,%20M.%20Younus&rft.date=2019-07-01&rft.volume=13&rft.issue=5&rft.spage=2203&rft.epage=2228&rft.pages=2203-2228&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-018-0813-6&rft_dat=%3Cproquest_cross%3E2254571350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254571350&rft_id=info:pmid/&rfr_iscdi=true |