Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic

A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-07, Vol.13 (5), p.2203-2228
1. Verfasser: Bhat, M. Younus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2228
container_issue 5
container_start_page 2203
container_title Complex analysis and operator theory
container_volume 13
creator Bhat, M. Younus
description A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform discrete set, given Λ = 0 , r / N + 2 Z , where N ≥ 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2 N - 1 such that r and N are relatively prime and Z is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space l 2 ( λ ) and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.
doi_str_mv 10.1007/s11785-018-0813-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2254571350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254571350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeA5-jMJrtJjlJtFYp6UDwuk81Gt6TZupsW_PfdEtGTp5mB997wPsYuEa4RoLgJiEUpUsAyhRKzVB6xCUqJacklP_7dRX7KzkJYAUgoqmrCFk-u3_a2dX6d3NmgvRlM8k4705khJK5Plk5Tl8yt6Zp4t8mLC3awO5PMPsmTHoy3YbD6nJ201AVz8TOn7G1-_zp7SJfPi8fZ7TLVGcohbSgDKnVbGeIkpcyqouYGpJA5Aa-pzAQInqMGQSCpqTVJzDU2BmuZC55N2dWYu_Hua2vCoFZu6_v4UvHYThQYE6IKR5X2LgRvWrXxdk3-WyGoAy818lKRlzrwUjJ6-OgJUdt_GP-X_L9pDyNtbM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254571350</pqid></control><display><type>article</type><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bhat, M. Younus</creator><creatorcontrib>Bhat, M. Younus</creatorcontrib><description>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform discrete set, given Λ = 0 , r / N + 2 Z , where N ≥ 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2 N - 1 such that r and N are relatively prime and Z is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space l 2 ( λ ) and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-018-0813-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Hilbert space ; Integers ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Subspaces ; Wavelet analysis</subject><ispartof>Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2203-2228</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</citedby><cites>FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-018-0813-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-018-0813-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhat, M. Younus</creatorcontrib><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform discrete set, given Λ = 0 , r / N + 2 Z , where N ≥ 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2 N - 1 such that r and N are relatively prime and Z is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space l 2 ( λ ) and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Hilbert space</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Subspaces</subject><subject>Wavelet analysis</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLeA5-jMJrtJjlJtFYp6UDwuk81Gt6TZupsW_PfdEtGTp5mB997wPsYuEa4RoLgJiEUpUsAyhRKzVB6xCUqJacklP_7dRX7KzkJYAUgoqmrCFk-u3_a2dX6d3NmgvRlM8k4705khJK5Plk5Tl8yt6Zp4t8mLC3awO5PMPsmTHoy3YbD6nJ201AVz8TOn7G1-_zp7SJfPi8fZ7TLVGcohbSgDKnVbGeIkpcyqouYGpJA5Aa-pzAQInqMGQSCpqTVJzDU2BmuZC55N2dWYu_Hua2vCoFZu6_v4UvHYThQYE6IKR5X2LgRvWrXxdk3-WyGoAy818lKRlzrwUjJ6-OgJUdt_GP-X_L9pDyNtbM0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bhat, M. Younus</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</title><author>Bhat, M. Younus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-da30a8cf9ea2a666397b2e06564a02ba83505241c05a06adbca614c1de1b64523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Hilbert space</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Subspaces</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhat, M. Younus</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhat, M. Younus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>2203</spage><epage>2228</epage><pages>2203-2228</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>A constructive algorithm based on the theory of spectral pairs for constructing nonuniform wavelet basis in L 2 ( R ) was considered by Gabardo and Nashed (J Funct Anal 158:209–241, 1998 ). In this setting, the associated translation set is a spectrum Λ which is not necessarily a group nor a uniform discrete set, given Λ = 0 , r / N + 2 Z , where N ≥ 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2 N - 1 such that r and N are relatively prime and Z is the set of all integers. The objective of this paper is to develop nonuniform discrete wavelets on local fields. We first provide a characterization of an orthonormal basis for the Hilbert space l 2 ( λ ) and then show that it can be expressed as orthogonal decomposition in terms of countable number of its closed subspaces. Moreover, we show that the wavelets associated with NUMRA on local fields of positive characteristic are connected with the wavelets on spectrum.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-018-0813-6</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2203-2228
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2254571350
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Hilbert space
Integers
Mathematics
Mathematics and Statistics
Operator Theory
Subspaces
Wavelet analysis
title Nonuniform Discrete Wavelets on Local Fields of Positive Characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20Discrete%20Wavelets%20on%20Local%20Fields%20of%20Positive%20Characteristic&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Bhat,%20M.%20Younus&rft.date=2019-07-01&rft.volume=13&rft.issue=5&rft.spage=2203&rft.epage=2228&rft.pages=2203-2228&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-018-0813-6&rft_dat=%3Cproquest_cross%3E2254571350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254571350&rft_id=info:pmid/&rfr_iscdi=true