Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA

It is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-07, Vol.13 (5), p.2357-2370
Hauptverfasser: Jevtić, Miroljub, Karapetrović, Boban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2370
container_issue 5
container_start_page 2357
container_title Complex analysis and operator theory
container_volume 13
creator Jevtić, Miroljub
Karapetrović, Boban
description It is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1
doi_str_mv 10.1007/s11785-019-00892-4
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2254570956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254570956</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-9ad099bba393eb7696da694028b884de2cb09c8614a17c9f7f6857eec9d5ba953</originalsourceid><addsrcrecordid>eNo9j81OwzAQhC0EEqXwApwscTask_hnj6WCBqlVD8C5suMNpIqSYrsHeHqKCpxm9M1oV8PYtYRbCWDukpTGKgESBYDFQlQnbCK1lsIWujj996o6ZxcpbQE0GMQJ6xY0UHR990WB113vKWa-cjl2DSU-a3I3vPFx4M879wPyu8vcReLzfkzE83ggxGsXw-exwmsuuRvCX3SE96v17JKdta5PdPWrU_b6-PAyr8VyvXiaz5ZiJ2WZBboAiN67EkvyRqMOTmMFhfXWVoGKxgM2VsvKSdNga1ptlSFqMCjvUJVTdnO8u4vjx55S3mzHfRwOLzfFYb8ygEqX3x83WE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254570956</pqid></control><display><type>article</type><title>Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA</title><source>SpringerLink Journals</source><creator>Jevtić, Miroljub ; Karapetrović, Boban</creator><creatorcontrib>Jevtić, Miroljub ; Karapetrović, Boban</creatorcontrib><description>It is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1&lt;p&lt;∞, and the Bloch space B, then the generalized Hilbert matrix Hμ, induced by a positive Borel measure μ on the interval [0, 1), is a bounded operator from the space X into the space Y if and only if μ is a 1-logarithmic 1-Carleson measure. We improve this result by proving that the same conclusion holds if we replace the space Λ1/pp, 1&lt;p&lt;∞, by the space Λ11. Also we prove that the same conclusion holds if X and Y are spaces of holomorphic functions in D, which are between the Besov space B1,1 and the mixed norm space H∞,1,1. As immediate consequences, we obtain many results and some of them are new.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-019-00892-4</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Analytic functions ; Function space ; H infinity ; Mathematical analysis ; Mathematics ; Operators (mathematics)</subject><ispartof>Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2357-2370</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jevtić, Miroljub</creatorcontrib><creatorcontrib>Karapetrović, Boban</creatorcontrib><title>Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA</title><title>Complex analysis and operator theory</title><description>It is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1&lt;p&lt;∞, and the Bloch space B, then the generalized Hilbert matrix Hμ, induced by a positive Borel measure μ on the interval [0, 1), is a bounded operator from the space X into the space Y if and only if μ is a 1-logarithmic 1-Carleson measure. We improve this result by proving that the same conclusion holds if we replace the space Λ1/pp, 1&lt;p&lt;∞, by the space Λ11. Also we prove that the same conclusion holds if X and Y are spaces of holomorphic functions in D, which are between the Besov space B1,1 and the mixed norm space H∞,1,1. As immediate consequences, we obtain many results and some of them are new.</description><subject>Analytic functions</subject><subject>Function space</subject><subject>H infinity</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operators (mathematics)</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9j81OwzAQhC0EEqXwApwscTask_hnj6WCBqlVD8C5suMNpIqSYrsHeHqKCpxm9M1oV8PYtYRbCWDukpTGKgESBYDFQlQnbCK1lsIWujj996o6ZxcpbQE0GMQJ6xY0UHR990WB113vKWa-cjl2DSU-a3I3vPFx4M879wPyu8vcReLzfkzE83ggxGsXw-exwmsuuRvCX3SE96v17JKdta5PdPWrU_b6-PAyr8VyvXiaz5ZiJ2WZBboAiN67EkvyRqMOTmMFhfXWVoGKxgM2VsvKSdNga1ptlSFqMCjvUJVTdnO8u4vjx55S3mzHfRwOLzfFYb8ygEqX3x83WE0</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jevtić, Miroljub</creator><creator>Karapetrović, Boban</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190701</creationdate><title>Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA</title><author>Jevtić, Miroljub ; Karapetrović, Boban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-9ad099bba393eb7696da694028b884de2cb09c8614a17c9f7f6857eec9d5ba953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytic functions</topic><topic>Function space</topic><topic>H infinity</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jevtić, Miroljub</creatorcontrib><creatorcontrib>Karapetrović, Boban</creatorcontrib><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jevtić, Miroljub</au><au>Karapetrović, Boban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA</atitle><jtitle>Complex analysis and operator theory</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>2357</spage><epage>2370</epage><pages>2357-2370</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>It is known that if X and Y are spaces of holomorphic functions in the unit disc D, which are between the mean Lipschitz space Λ1/pp, where 1&lt;p&lt;∞, and the Bloch space B, then the generalized Hilbert matrix Hμ, induced by a positive Borel measure μ on the interval [0, 1), is a bounded operator from the space X into the space Y if and only if μ is a 1-logarithmic 1-Carleson measure. We improve this result by proving that the same conclusion holds if we replace the space Λ1/pp, 1&lt;p&lt;∞, by the space Λ11. Also we prove that the same conclusion holds if X and Y are spaces of holomorphic functions in D, which are between the Besov space B1,1 and the mixed norm space H∞,1,1. As immediate consequences, we obtain many results and some of them are new.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11785-019-00892-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2019-07, Vol.13 (5), p.2357-2370
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2254570956
source SpringerLink Journals
subjects Analytic functions
Function space
H infinity
Mathematical analysis
Mathematics
Operators (mathematics)
title Generalized Hilbert Matrices Acting on Spaces that are Close to the Hardy Space H 1 and to the Space BMOA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Hilbert%20Matrices%20Acting%20on%20Spaces%20that%20are%20Close%20to%20the%20Hardy%20Space%20H%201%20and%20to%20the%20Space%20BMOA&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Jevti%C4%87,%20Miroljub&rft.date=2019-07-01&rft.volume=13&rft.issue=5&rft.spage=2357&rft.epage=2370&rft.pages=2357-2370&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-019-00892-4&rft_dat=%3Cproquest%3E2254570956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254570956&rft_id=info:pmid/&rfr_iscdi=true