Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction

To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2019-01, Vol.12 (7), p.2200-2211
Hauptverfasser: Sharma, Monika, Jang, Jue-Hyuk, Shin, Dong Yun, Kwon, Jeong An, Lim, Dong-Hee, Choi, Daeil, Sung, Hukwang, Jang, Jeonghee, Lee, Sang-Young, Lee, Kwan Young, Park, Hee-Young, Jung, Namgee, Yoo, Sung Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2211
container_issue 7
container_start_page 2200
container_title Energy & environmental science
container_volume 12
creator Sharma, Monika
Jang, Jue-Hyuk
Shin, Dong Yun
Kwon, Jeong An
Lim, Dong-Hee
Choi, Daeil
Sung, Hukwang
Jang, Jeonghee
Lee, Sang-Young
Lee, Kwan Young
Park, Hee-Young
Jung, Namgee
Yoo, Sung Jong
description To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm −2 , making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.
doi_str_mv 10.1039/C9EE00381A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2254460329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254460329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKcvfoKAb0I1aZq0eRxj_oGBLwMfy216u3Z2TU3S4b6DH9puU3y6517OPT84hNxy9sCZ0I9zvVgwJjI-OyMTnsokkilT539a6fiSXHm_YUzFLNUT8v1u3Qeths6ExnZRgKa1Dku6dtDX2CHdNUCDg843BwPdYoCWYmeg90MLxxt4CrRu1nW7pzDm7JBCV9JycFC0SA2ML3sfaGUdDTVS-7VfY0dHzHCkjgqO4ppcVNB6vPmdU7J6WqzmL9Hy7fl1PltGRqg4RIU2lS5kKpRIqyIpERMlSiaZAQQJPBO84gVkstRoMslUdlgKrVJMMUMxJXen2N7ZzwF9yDd2cN1IzONYJoliItaj6_7kMs5677DKe9dswe1zzvJD2fl_2eIHWWt1OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254460329</pqid></control><display><type>article</type><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</creator><creatorcontrib>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</creatorcontrib><description>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm −2 , making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C9EE00381A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Anion exchange ; Anion exchanging ; Catalysis ; Catalysts ; Catalytic activity ; Charge transfer ; Chemical reduction ; Cobalt ; Durability ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electronic structure ; Encapsulation ; Fuel cells ; Fuel technology ; Graphene ; Mathematical analysis ; Maximum power density ; Nanoparticles ; Oxygen ; Oxygen reduction reactions ; Performance enhancement ; Structural analysis ; Transition metals ; Work functions</subject><ispartof>Energy &amp; environmental science, 2019-01, Vol.12 (7), p.2200-2211</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</citedby><cites>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</cites><orcidid>0000-0001-7057-1464 ; 0000-0003-0238-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Jang, Jue-Hyuk</creatorcontrib><creatorcontrib>Shin, Dong Yun</creatorcontrib><creatorcontrib>Kwon, Jeong An</creatorcontrib><creatorcontrib>Lim, Dong-Hee</creatorcontrib><creatorcontrib>Choi, Daeil</creatorcontrib><creatorcontrib>Sung, Hukwang</creatorcontrib><creatorcontrib>Jang, Jeonghee</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Park, Hee-Young</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><title>Energy &amp; environmental science</title><description>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm −2 , making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</description><subject>Activated carbon</subject><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Encapsulation</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Maximum power density</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Performance enhancement</subject><subject>Structural analysis</subject><subject>Transition metals</subject><subject>Work functions</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOKcvfoKAb0I1aZq0eRxj_oGBLwMfy216u3Z2TU3S4b6DH9puU3y6517OPT84hNxy9sCZ0I9zvVgwJjI-OyMTnsokkilT539a6fiSXHm_YUzFLNUT8v1u3Qeths6ExnZRgKa1Dku6dtDX2CHdNUCDg843BwPdYoCWYmeg90MLxxt4CrRu1nW7pzDm7JBCV9JycFC0SA2ML3sfaGUdDTVS-7VfY0dHzHCkjgqO4ppcVNB6vPmdU7J6WqzmL9Hy7fl1PltGRqg4RIU2lS5kKpRIqyIpERMlSiaZAQQJPBO84gVkstRoMslUdlgKrVJMMUMxJXen2N7ZzwF9yDd2cN1IzONYJoliItaj6_7kMs5677DKe9dswe1zzvJD2fl_2eIHWWt1OQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sharma, Monika</creator><creator>Jang, Jue-Hyuk</creator><creator>Shin, Dong Yun</creator><creator>Kwon, Jeong An</creator><creator>Lim, Dong-Hee</creator><creator>Choi, Daeil</creator><creator>Sung, Hukwang</creator><creator>Jang, Jeonghee</creator><creator>Lee, Sang-Young</creator><creator>Lee, Kwan Young</creator><creator>Park, Hee-Young</creator><creator>Jung, Namgee</creator><creator>Yoo, Sung Jong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid><orcidid>https://orcid.org/0000-0003-0238-5971</orcidid></search><sort><creationdate>20190101</creationdate><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><author>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Encapsulation</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Maximum power density</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Performance enhancement</topic><topic>Structural analysis</topic><topic>Transition metals</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Jang, Jue-Hyuk</creatorcontrib><creatorcontrib>Shin, Dong Yun</creatorcontrib><creatorcontrib>Kwon, Jeong An</creatorcontrib><creatorcontrib>Lim, Dong-Hee</creatorcontrib><creatorcontrib>Choi, Daeil</creatorcontrib><creatorcontrib>Sung, Hukwang</creatorcontrib><creatorcontrib>Jang, Jeonghee</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Park, Hee-Young</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Monika</au><au>Jang, Jue-Hyuk</au><au>Shin, Dong Yun</au><au>Kwon, Jeong An</au><au>Lim, Dong-Hee</au><au>Choi, Daeil</au><au>Sung, Hukwang</au><au>Jang, Jeonghee</au><au>Lee, Sang-Young</au><au>Lee, Kwan Young</au><au>Park, Hee-Young</au><au>Jung, Namgee</au><au>Yoo, Sung Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>7</issue><spage>2200</spage><epage>2211</epage><pages>2200-2211</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm −2 , making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9EE00381A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid><orcidid>https://orcid.org/0000-0003-0238-5971</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-01, Vol.12 (7), p.2200-2211
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2254460329
source Royal Society Of Chemistry Journals 2008-
subjects Activated carbon
Anion exchange
Anion exchanging
Catalysis
Catalysts
Catalytic activity
Charge transfer
Chemical reduction
Cobalt
Durability
Electrocatalysts
Electrochemical analysis
Electrochemistry
Electronic structure
Encapsulation
Fuel cells
Fuel technology
Graphene
Mathematical analysis
Maximum power density
Nanoparticles
Oxygen
Oxygen reduction reactions
Performance enhancement
Structural analysis
Transition metals
Work functions
title Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Work%20function-tailored%20graphene%20via%20transition%20metal%20encapsulation%20as%20a%20highly%20active%20and%20durable%20catalyst%20for%20the%20oxygen%20reduction%20reaction&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sharma,%20Monika&rft.date=2019-01-01&rft.volume=12&rft.issue=7&rft.spage=2200&rft.epage=2211&rft.pages=2200-2211&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C9EE00381A&rft_dat=%3Cproquest_cross%3E2254460329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254460329&rft_id=info:pmid/&rfr_iscdi=true