Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction
To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene via adopting a graphene shell-encapsulated C...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2019-01, Vol.12 (7), p.2200-2211 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2211 |
---|---|
container_issue | 7 |
container_start_page | 2200 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Sharma, Monika Jang, Jue-Hyuk Shin, Dong Yun Kwon, Jeong An Lim, Dong-Hee Choi, Daeil Sung, Hukwang Jang, Jeonghee Lee, Sang-Young Lee, Kwan Young Park, Hee-Young Jung, Namgee Yoo, Sung Jong |
description | To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene
via
adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm
−2
, making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs. |
doi_str_mv | 10.1039/C9EE00381A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2254460329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254460329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxYMoOKcvfoKAb0I1aZq0eRxj_oGBLwMfy216u3Z2TU3S4b6DH9puU3y6517OPT84hNxy9sCZ0I9zvVgwJjI-OyMTnsokkilT539a6fiSXHm_YUzFLNUT8v1u3Qeths6ExnZRgKa1Dku6dtDX2CHdNUCDg843BwPdYoCWYmeg90MLxxt4CrRu1nW7pzDm7JBCV9JycFC0SA2ML3sfaGUdDTVS-7VfY0dHzHCkjgqO4ppcVNB6vPmdU7J6WqzmL9Hy7fl1PltGRqg4RIU2lS5kKpRIqyIpERMlSiaZAQQJPBO84gVkstRoMslUdlgKrVJMMUMxJXen2N7ZzwF9yDd2cN1IzONYJoliItaj6_7kMs5677DKe9dswe1zzvJD2fl_2eIHWWt1OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254460329</pqid></control><display><type>article</type><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</creator><creatorcontrib>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</creatorcontrib><description>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene
via
adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm
−2
, making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C9EE00381A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Anion exchange ; Anion exchanging ; Catalysis ; Catalysts ; Catalytic activity ; Charge transfer ; Chemical reduction ; Cobalt ; Durability ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Electronic structure ; Encapsulation ; Fuel cells ; Fuel technology ; Graphene ; Mathematical analysis ; Maximum power density ; Nanoparticles ; Oxygen ; Oxygen reduction reactions ; Performance enhancement ; Structural analysis ; Transition metals ; Work functions</subject><ispartof>Energy & environmental science, 2019-01, Vol.12 (7), p.2200-2211</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</citedby><cites>FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</cites><orcidid>0000-0001-7057-1464 ; 0000-0003-0238-5971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Jang, Jue-Hyuk</creatorcontrib><creatorcontrib>Shin, Dong Yun</creatorcontrib><creatorcontrib>Kwon, Jeong An</creatorcontrib><creatorcontrib>Lim, Dong-Hee</creatorcontrib><creatorcontrib>Choi, Daeil</creatorcontrib><creatorcontrib>Sung, Hukwang</creatorcontrib><creatorcontrib>Jang, Jeonghee</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Park, Hee-Young</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><title>Energy & environmental science</title><description>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene
via
adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm
−2
, making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</description><subject>Activated carbon</subject><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Encapsulation</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Maximum power density</subject><subject>Nanoparticles</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Performance enhancement</subject><subject>Structural analysis</subject><subject>Transition metals</subject><subject>Work functions</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkF9LwzAUxYMoOKcvfoKAb0I1aZq0eRxj_oGBLwMfy216u3Z2TU3S4b6DH9puU3y6517OPT84hNxy9sCZ0I9zvVgwJjI-OyMTnsokkilT539a6fiSXHm_YUzFLNUT8v1u3Qeths6ExnZRgKa1Dku6dtDX2CHdNUCDg843BwPdYoCWYmeg90MLxxt4CrRu1nW7pzDm7JBCV9JycFC0SA2ML3sfaGUdDTVS-7VfY0dHzHCkjgqO4ppcVNB6vPmdU7J6WqzmL9Hy7fl1PltGRqg4RIU2lS5kKpRIqyIpERMlSiaZAQQJPBO84gVkstRoMslUdlgKrVJMMUMxJXen2N7ZzwF9yDd2cN1IzONYJoliItaj6_7kMs5677DKe9dswe1zzvJD2fl_2eIHWWt1OQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sharma, Monika</creator><creator>Jang, Jue-Hyuk</creator><creator>Shin, Dong Yun</creator><creator>Kwon, Jeong An</creator><creator>Lim, Dong-Hee</creator><creator>Choi, Daeil</creator><creator>Sung, Hukwang</creator><creator>Jang, Jeonghee</creator><creator>Lee, Sang-Young</creator><creator>Lee, Kwan Young</creator><creator>Park, Hee-Young</creator><creator>Jung, Namgee</creator><creator>Yoo, Sung Jong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid><orcidid>https://orcid.org/0000-0003-0238-5971</orcidid></search><sort><creationdate>20190101</creationdate><title>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</title><author>Sharma, Monika ; Jang, Jue-Hyuk ; Shin, Dong Yun ; Kwon, Jeong An ; Lim, Dong-Hee ; Choi, Daeil ; Sung, Hukwang ; Jang, Jeonghee ; Lee, Sang-Young ; Lee, Kwan Young ; Park, Hee-Young ; Jung, Namgee ; Yoo, Sung Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b9cf9b573637fb4dee463d050caea5a1831f1ba85d9ec85068ba85b967e7e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Encapsulation</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Maximum power density</topic><topic>Nanoparticles</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Performance enhancement</topic><topic>Structural analysis</topic><topic>Transition metals</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Monika</creatorcontrib><creatorcontrib>Jang, Jue-Hyuk</creatorcontrib><creatorcontrib>Shin, Dong Yun</creatorcontrib><creatorcontrib>Kwon, Jeong An</creatorcontrib><creatorcontrib>Lim, Dong-Hee</creatorcontrib><creatorcontrib>Choi, Daeil</creatorcontrib><creatorcontrib>Sung, Hukwang</creatorcontrib><creatorcontrib>Jang, Jeonghee</creatorcontrib><creatorcontrib>Lee, Sang-Young</creatorcontrib><creatorcontrib>Lee, Kwan Young</creatorcontrib><creatorcontrib>Park, Hee-Young</creatorcontrib><creatorcontrib>Jung, Namgee</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Monika</au><au>Jang, Jue-Hyuk</au><au>Shin, Dong Yun</au><au>Kwon, Jeong An</au><au>Lim, Dong-Hee</au><au>Choi, Daeil</au><au>Sung, Hukwang</au><au>Jang, Jeonghee</au><au>Lee, Sang-Young</au><au>Lee, Kwan Young</au><au>Park, Hee-Young</au><au>Jung, Namgee</au><au>Yoo, Sung Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction</atitle><jtitle>Energy & environmental science</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>12</volume><issue>7</issue><spage>2200</spage><epage>2211</epage><pages>2200-2211</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>To dramatically improve the performance of non-precious catalyst-based anion exchange membrane fuel cells (AEMFCs), a conceptual change in the structure of conventional electrocatalysts is needed. Here we report a novel work function tailoring of graphene
via
adopting a graphene shell-encapsulated Co nanoarchitecture to efficiently activate the graphitic carbon shell as an exclusive and main active site for the oxygen reduction reaction (ORR). Theoretical calculations and electrochemical analysis suggest that the charge transfer from core Co nanoparticles to the outer graphene shell results in a significant change in the electronic structure of the graphene shell and reduces its work function. The present catalyst shows high ORR catalytic activity but exceptionally enhanced durability compared to a Pt catalyst in alkaline media, which is attributed mainly to the reduced work function of the outer graphene shell and the 3D nanographene structure providing a large number of active carbon sites. The single cell using the graphene shell-encapsulated Co nanoparticles as a cathode catalyst produces a high maximum power density of 412 mW cm
−2
, making this among the best non-precious catalysts for the ORR reported so far. Therefore, our results demonstrate a promising strategy to rationally design inexpensive and durable oxygen reduction catalysts, and this hybrid concept will provide a new perspective for catalyst structures which can practically be used in AEMFCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9EE00381A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7057-1464</orcidid><orcidid>https://orcid.org/0000-0003-0238-5971</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-01, Vol.12 (7), p.2200-2211 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2254460329 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Activated carbon Anion exchange Anion exchanging Catalysis Catalysts Catalytic activity Charge transfer Chemical reduction Cobalt Durability Electrocatalysts Electrochemical analysis Electrochemistry Electronic structure Encapsulation Fuel cells Fuel technology Graphene Mathematical analysis Maximum power density Nanoparticles Oxygen Oxygen reduction reactions Performance enhancement Structural analysis Transition metals Work functions |
title | Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Work%20function-tailored%20graphene%20via%20transition%20metal%20encapsulation%20as%20a%20highly%20active%20and%20durable%20catalyst%20for%20the%20oxygen%20reduction%20reaction&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sharma,%20Monika&rft.date=2019-01-01&rft.volume=12&rft.issue=7&rft.spage=2200&rft.epage=2211&rft.pages=2200-2211&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C9EE00381A&rft_dat=%3Cproquest_cross%3E2254460329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254460329&rft_id=info:pmid/&rfr_iscdi=true |