Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild
Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Estephe Arnaud Dapogny, Arnaud Bailly, Kevin |
description | Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2254218888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254218888</sourcerecordid><originalsourceid>FETCH-proquest_journals_22542188883</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNBa0DdOuZVSahtCS7G8mTKONqP_n4s-oLs5HM5dCY-ljIIkZt4I37kuDEM-HFkp6Ym0sEDQVBNqOgMj3dBYODdYyoxD_9CgfJG8eoJS3Tamh5noaqh4g-6trndi_aq0g__jVuzzrDhdgtEOnxluKrthtmZJJbOKOUqWyf9eX9C6OAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254218888</pqid></control><display><type>article</type><title>Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild</title><source>Free E- Journals</source><creator>Estephe Arnaud ; Dapogny, Arnaud ; Bailly, Kevin</creator><creatorcontrib>Estephe Arnaud ; Dapogny, Arnaud ; Bailly, Kevin</creatorcontrib><description>Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Animation ; Computer vision ; Datasets ; Face recognition</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Estephe Arnaud</creatorcontrib><creatorcontrib>Dapogny, Arnaud</creatorcontrib><creatorcontrib>Bailly, Kevin</creatorcontrib><title>Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild</title><title>arXiv.org</title><description>Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods.</description><subject>Alignment</subject><subject>Animation</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Face recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNBa0DdOuZVSahtCS7G8mTKONqP_n4s-oLs5HM5dCY-ljIIkZt4I37kuDEM-HFkp6Ym0sEDQVBNqOgMj3dBYODdYyoxD_9CgfJG8eoJS3Tamh5noaqh4g-6trndi_aq0g__jVuzzrDhdgtEOnxluKrthtmZJJbOKOUqWyf9eX9C6OAo</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Estephe Arnaud</creator><creator>Dapogny, Arnaud</creator><creator>Bailly, Kevin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190710</creationdate><title>Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild</title><author>Estephe Arnaud ; Dapogny, Arnaud ; Bailly, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22542188883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alignment</topic><topic>Animation</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Face recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Estephe Arnaud</creatorcontrib><creatorcontrib>Dapogny, Arnaud</creatorcontrib><creatorcontrib>Bailly, Kevin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estephe Arnaud</au><au>Dapogny, Arnaud</au><au>Bailly, Kevin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild</atitle><jtitle>arXiv.org</jtitle><date>2019-07-10</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2254218888 |
source | Free E- Journals |
subjects | Alignment Animation Computer vision Datasets Face recognition |
title | Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tree-gated%20Deep%20Regressor%20Ensemble%20For%20Face%20Alignment%20In%20The%20Wild&rft.jtitle=arXiv.org&rft.au=Estephe%20Arnaud&rft.date=2019-07-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2254218888%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254218888&rft_id=info:pmid/&rfr_iscdi=true |