Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild

Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Estephe Arnaud, Dapogny, Arnaud, Bailly, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods.
ISSN:2331-8422