Decentralized Dynamic State Estimation in Microgrids
This paper proposes a decentralized dynamic state estimation scheme for microgrids. The approach employs the voltage and current measurements in the dq0 reference frame through phasor synchronization to be able to exclude orthogonal functions from their relationship formulas. Based on that premise,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nguyen, Bang L H Vu, Tuyen V Ngo, Tuan A |
description | This paper proposes a decentralized dynamic state estimation scheme for microgrids. The approach employs the voltage and current measurements in the dq0 reference frame through phasor synchronization to be able to exclude orthogonal functions from their relationship formulas. Based on that premise, we utilize a Kalman filter to dynamically estimate states of microgrids. The decoupling of measurement values to state and input vectors reduces the computational complexity. The Kalman filter considers the process noise covariances, which are modified with respect to the covariance of measured input values. Theoretical analysis and simulation results are provided for validation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2254218828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254218828</sourcerecordid><originalsourceid>FETCH-proquest_journals_22542188283</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC-lLotltxcVJ9xLSKK-0iSavg369Dn6A0x3OXbACpKwrowBWrMx5EELAbg9ay4KpxjsfKNkR377nzSvYCR2_kCXP20w4WcIYOAZ-RpfiPWGfN2x5s2P25a9rtj2218OpeqT4nH2mbohzCl_qALSC2hgw8r_rA2PwNLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254218828</pqid></control><display><type>article</type><title>Decentralized Dynamic State Estimation in Microgrids</title><source>Free E- Journals</source><creator>Nguyen, Bang L H ; Vu, Tuyen V ; Ngo, Tuan A</creator><creatorcontrib>Nguyen, Bang L H ; Vu, Tuyen V ; Ngo, Tuan A</creatorcontrib><description>This paper proposes a decentralized dynamic state estimation scheme for microgrids. The approach employs the voltage and current measurements in the dq0 reference frame through phasor synchronization to be able to exclude orthogonal functions from their relationship formulas. Based on that premise, we utilize a Kalman filter to dynamically estimate states of microgrids. The decoupling of measurement values to state and input vectors reduces the computational complexity. The Kalman filter considers the process noise covariances, which are modified with respect to the covariance of measured input values. Theoretical analysis and simulation results are provided for validation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Covariance ; Decoupling ; Electric power grids ; Kalman filters ; Orthogonal functions ; State estimation ; State vectors ; Synchronism</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Nguyen, Bang L H</creatorcontrib><creatorcontrib>Vu, Tuyen V</creatorcontrib><creatorcontrib>Ngo, Tuan A</creatorcontrib><title>Decentralized Dynamic State Estimation in Microgrids</title><title>arXiv.org</title><description>This paper proposes a decentralized dynamic state estimation scheme for microgrids. The approach employs the voltage and current measurements in the dq0 reference frame through phasor synchronization to be able to exclude orthogonal functions from their relationship formulas. Based on that premise, we utilize a Kalman filter to dynamically estimate states of microgrids. The decoupling of measurement values to state and input vectors reduces the computational complexity. The Kalman filter considers the process noise covariances, which are modified with respect to the covariance of measured input values. Theoretical analysis and simulation results are provided for validation.</description><subject>Computer simulation</subject><subject>Covariance</subject><subject>Decoupling</subject><subject>Electric power grids</subject><subject>Kalman filters</subject><subject>Orthogonal functions</subject><subject>State estimation</subject><subject>State vectors</subject><subject>Synchronism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC-lLotltxcVJ9xLSKK-0iSavg369Dn6A0x3OXbACpKwrowBWrMx5EELAbg9ay4KpxjsfKNkR377nzSvYCR2_kCXP20w4WcIYOAZ-RpfiPWGfN2x5s2P25a9rtj2218OpeqT4nH2mbohzCl_qALSC2hgw8r_rA2PwNLg</recordid><startdate>20190706</startdate><enddate>20190706</enddate><creator>Nguyen, Bang L H</creator><creator>Vu, Tuyen V</creator><creator>Ngo, Tuan A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190706</creationdate><title>Decentralized Dynamic State Estimation in Microgrids</title><author>Nguyen, Bang L H ; Vu, Tuyen V ; Ngo, Tuan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22542188283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Covariance</topic><topic>Decoupling</topic><topic>Electric power grids</topic><topic>Kalman filters</topic><topic>Orthogonal functions</topic><topic>State estimation</topic><topic>State vectors</topic><topic>Synchronism</topic><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Bang L H</creatorcontrib><creatorcontrib>Vu, Tuyen V</creatorcontrib><creatorcontrib>Ngo, Tuan A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Bang L H</au><au>Vu, Tuyen V</au><au>Ngo, Tuan A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Decentralized Dynamic State Estimation in Microgrids</atitle><jtitle>arXiv.org</jtitle><date>2019-07-06</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a decentralized dynamic state estimation scheme for microgrids. The approach employs the voltage and current measurements in the dq0 reference frame through phasor synchronization to be able to exclude orthogonal functions from their relationship formulas. Based on that premise, we utilize a Kalman filter to dynamically estimate states of microgrids. The decoupling of measurement values to state and input vectors reduces the computational complexity. The Kalman filter considers the process noise covariances, which are modified with respect to the covariance of measured input values. Theoretical analysis and simulation results are provided for validation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2254218828 |
source | Free E- Journals |
subjects | Computer simulation Covariance Decoupling Electric power grids Kalman filters Orthogonal functions State estimation State vectors Synchronism |
title | Decentralized Dynamic State Estimation in Microgrids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Decentralized%20Dynamic%20State%20Estimation%20in%20Microgrids&rft.jtitle=arXiv.org&rft.au=Nguyen,%20Bang%20L%20H&rft.date=2019-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2254218828%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254218828&rft_id=info:pmid/&rfr_iscdi=true |