Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries
P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc),...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-10, Vol.54 (19), p.12723-12736 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12736 |
---|---|
container_issue | 19 |
container_start_page | 12723 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Wang, Lijun Wang, Yanzhi Yang, Xiaheng Wang, Jinlong Yang, Xiduo Tang, Jiantao |
description | P2-type Na
2/3
Co
0.25
Mn
0.705
Si
0.045
O
2
(Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6
3
/mmc), in which Si
4+
ions substitute the Mn site of P2-Na
2/3
Co
0.25
Mn
0.75
O
2
(NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g
−1
at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g
−1
at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T
M
–O and O–O bonds, more stable occupancy rate in the Na
e
site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na
+
extraction and intercalation. Hence, SiO
2
as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs. |
doi_str_mv | 10.1007/s10853-019-03807-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2254190714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593459273</galeid><sourcerecordid>A593459273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</originalsourceid><addsrcrecordid>eNp9kc2KFDEURoMo2I6-gKuAKxcZb_46VcuhGceB0RFH1yGVutWdprrSJmmY2vkOvqFPYsYSZDYS-AKXc5ILHyGvOZxzAPMuc2i0ZMBbBrIBw-YnZMW1kUw1IJ-SFYAQTKg1f05e5LwHAG0EX5H95b3HccSpUD_70XVhDGWmcaCfBSvzEekn9-vHz02s8XGqcRdq3FLvyi72SA-uYApupENMdBe2O5bqhObYh9OBhTjRzpUHBPNL8mxwY8ZXf-8z8u395dfNB3Zze3W9ubhhXkleWN0a10bqppNdj37ojRMexVqaVinQAEr4xnjftUL6thear6U0qFqDnetlI8_Im-XdY4rfT5iL3cdTmuqXVgiteAuGq0qdL9TWjWjDNMSSnK-nx0PwccIh1PmFbqXSrTCyCm8fCZUpeF-27pSzvb778pgVC-tTzDnhYI8pHFyaLQf7UJhdCrO1MPunMDtXSS5SrvC0xfRv7_9YvwHk7Jt1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254190714</pqid></control><display><type>article</type><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><source>SpringerNature Journals</source><creator>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</creator><creatorcontrib>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</creatorcontrib><description>P2-type Na
2/3
Co
0.25
Mn
0.705
Si
0.045
O
2
(Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6
3
/mmc), in which Si
4+
ions substitute the Mn site of P2-Na
2/3
Co
0.25
Mn
0.75
O
2
(NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g
−1
at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g
−1
at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T
M
–O and O–O bonds, more stable occupancy rate in the Na
e
site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na
+
extraction and intercalation. Hence, SiO
2
as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03807-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Batteries ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dopants ; Electrode materials ; Energy Materials ; Materials Science ; Occupancy ; Phase transitions ; Polymer Sciences ; Rechargeable batteries ; Silicon ; Silicon dioxide ; Sodium-ion batteries ; Solid Mechanics ; Unit cell</subject><ispartof>Journal of materials science, 2019-10, Vol.54 (19), p.12723-12736</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</citedby><cites>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</cites><orcidid>0000-0001-6700-0556 ; 0000-0001-8163-5275 ; 0000-0003-4388-2122 ; 0000-0002-8324-7425 ; 0000-0002-3255-1523 ; 0000-0001-8228-8703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03807-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03807-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiduo</creatorcontrib><creatorcontrib>Tang, Jiantao</creatorcontrib><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>P2-type Na
2/3
Co
0.25
Mn
0.705
Si
0.045
O
2
(Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6
3
/mmc), in which Si
4+
ions substitute the Mn site of P2-Na
2/3
Co
0.25
Mn
0.75
O
2
(NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g
−1
at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g
−1
at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T
M
–O and O–O bonds, more stable occupancy rate in the Na
e
site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na
+
extraction and intercalation. Hence, SiO
2
as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dopants</subject><subject>Electrode materials</subject><subject>Energy Materials</subject><subject>Materials Science</subject><subject>Occupancy</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Sodium-ion batteries</subject><subject>Solid Mechanics</subject><subject>Unit cell</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc2KFDEURoMo2I6-gKuAKxcZb_46VcuhGceB0RFH1yGVutWdprrSJmmY2vkOvqFPYsYSZDYS-AKXc5ILHyGvOZxzAPMuc2i0ZMBbBrIBw-YnZMW1kUw1IJ-SFYAQTKg1f05e5LwHAG0EX5H95b3HccSpUD_70XVhDGWmcaCfBSvzEekn9-vHz02s8XGqcRdq3FLvyi72SA-uYApupENMdBe2O5bqhObYh9OBhTjRzpUHBPNL8mxwY8ZXf-8z8u395dfNB3Zze3W9ubhhXkleWN0a10bqppNdj37ojRMexVqaVinQAEr4xnjftUL6thear6U0qFqDnetlI8_Im-XdY4rfT5iL3cdTmuqXVgiteAuGq0qdL9TWjWjDNMSSnK-nx0PwccIh1PmFbqXSrTCyCm8fCZUpeF-27pSzvb778pgVC-tTzDnhYI8pHFyaLQf7UJhdCrO1MPunMDtXSS5SrvC0xfRv7_9YvwHk7Jt1</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Lijun</creator><creator>Wang, Yanzhi</creator><creator>Yang, Xiaheng</creator><creator>Wang, Jinlong</creator><creator>Yang, Xiduo</creator><creator>Tang, Jiantao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6700-0556</orcidid><orcidid>https://orcid.org/0000-0001-8163-5275</orcidid><orcidid>https://orcid.org/0000-0003-4388-2122</orcidid><orcidid>https://orcid.org/0000-0002-8324-7425</orcidid><orcidid>https://orcid.org/0000-0002-3255-1523</orcidid><orcidid>https://orcid.org/0000-0001-8228-8703</orcidid></search><sort><creationdate>20191001</creationdate><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><author>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dopants</topic><topic>Electrode materials</topic><topic>Energy Materials</topic><topic>Materials Science</topic><topic>Occupancy</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Sodium-ion batteries</topic><topic>Solid Mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiduo</creatorcontrib><creatorcontrib>Tang, Jiantao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Wang, Yanzhi</au><au>Yang, Xiaheng</au><au>Wang, Jinlong</au><au>Yang, Xiduo</au><au>Tang, Jiantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>54</volume><issue>19</issue><spage>12723</spage><epage>12736</epage><pages>12723-12736</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>P2-type Na
2/3
Co
0.25
Mn
0.705
Si
0.045
O
2
(Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6
3
/mmc), in which Si
4+
ions substitute the Mn site of P2-Na
2/3
Co
0.25
Mn
0.75
O
2
(NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g
−1
at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g
−1
at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T
M
–O and O–O bonds, more stable occupancy rate in the Na
e
site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na
+
extraction and intercalation. Hence, SiO
2
as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03807-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6700-0556</orcidid><orcidid>https://orcid.org/0000-0001-8163-5275</orcidid><orcidid>https://orcid.org/0000-0003-4388-2122</orcidid><orcidid>https://orcid.org/0000-0002-8324-7425</orcidid><orcidid>https://orcid.org/0000-0002-3255-1523</orcidid><orcidid>https://orcid.org/0000-0001-8228-8703</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-10, Vol.54 (19), p.12723-12736 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2254190714 |
source | SpringerNature Journals |
subjects | Batteries Cathodes Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Dopants Electrode materials Energy Materials Materials Science Occupancy Phase transitions Polymer Sciences Rechargeable batteries Silicon Silicon dioxide Sodium-ion batteries Solid Mechanics Unit cell |
title | Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excellent%20cyclability%20of%20P2-type%20Na%E2%80%93Co%E2%80%93Mn%E2%80%93Si%E2%80%93O%20cathode%20material%20for%20high-rate%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Lijun&rft.date=2019-10-01&rft.volume=54&rft.issue=19&rft.spage=12723&rft.epage=12736&rft.pages=12723-12736&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03807-y&rft_dat=%3Cgale_proqu%3EA593459273%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254190714&rft_id=info:pmid/&rft_galeid=A593459273&rfr_iscdi=true |