Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries

P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-10, Vol.54 (19), p.12723-12736
Hauptverfasser: Wang, Lijun, Wang, Yanzhi, Yang, Xiaheng, Wang, Jinlong, Yang, Xiduo, Tang, Jiantao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12736
container_issue 19
container_start_page 12723
container_title Journal of materials science
container_volume 54
creator Wang, Lijun
Wang, Yanzhi
Yang, Xiaheng
Wang, Jinlong
Yang, Xiduo
Tang, Jiantao
description P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc), in which Si 4+ ions substitute the Mn site of P2-Na 2/3 Co 0.25 Mn 0.75 O 2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g −1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g −1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T M –O and O–O bonds, more stable occupancy rate in the Na e site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na + extraction and intercalation. Hence, SiO 2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.
doi_str_mv 10.1007/s10853-019-03807-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2254190714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593459273</galeid><sourcerecordid>A593459273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</originalsourceid><addsrcrecordid>eNp9kc2KFDEURoMo2I6-gKuAKxcZb_46VcuhGceB0RFH1yGVutWdprrSJmmY2vkOvqFPYsYSZDYS-AKXc5ILHyGvOZxzAPMuc2i0ZMBbBrIBw-YnZMW1kUw1IJ-SFYAQTKg1f05e5LwHAG0EX5H95b3HccSpUD_70XVhDGWmcaCfBSvzEekn9-vHz02s8XGqcRdq3FLvyi72SA-uYApupENMdBe2O5bqhObYh9OBhTjRzpUHBPNL8mxwY8ZXf-8z8u395dfNB3Zze3W9ubhhXkleWN0a10bqppNdj37ojRMexVqaVinQAEr4xnjftUL6thear6U0qFqDnetlI8_Im-XdY4rfT5iL3cdTmuqXVgiteAuGq0qdL9TWjWjDNMSSnK-nx0PwccIh1PmFbqXSrTCyCm8fCZUpeF-27pSzvb778pgVC-tTzDnhYI8pHFyaLQf7UJhdCrO1MPunMDtXSS5SrvC0xfRv7_9YvwHk7Jt1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254190714</pqid></control><display><type>article</type><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><source>SpringerNature Journals</source><creator>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</creator><creatorcontrib>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</creatorcontrib><description>P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc), in which Si 4+ ions substitute the Mn site of P2-Na 2/3 Co 0.25 Mn 0.75 O 2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g −1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g −1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T M –O and O–O bonds, more stable occupancy rate in the Na e site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na + extraction and intercalation. Hence, SiO 2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03807-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Batteries ; Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dopants ; Electrode materials ; Energy Materials ; Materials Science ; Occupancy ; Phase transitions ; Polymer Sciences ; Rechargeable batteries ; Silicon ; Silicon dioxide ; Sodium-ion batteries ; Solid Mechanics ; Unit cell</subject><ispartof>Journal of materials science, 2019-10, Vol.54 (19), p.12723-12736</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</citedby><cites>FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</cites><orcidid>0000-0001-6700-0556 ; 0000-0001-8163-5275 ; 0000-0003-4388-2122 ; 0000-0002-8324-7425 ; 0000-0002-3255-1523 ; 0000-0001-8228-8703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03807-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03807-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiduo</creatorcontrib><creatorcontrib>Tang, Jiantao</creatorcontrib><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc), in which Si 4+ ions substitute the Mn site of P2-Na 2/3 Co 0.25 Mn 0.75 O 2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g −1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g −1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T M –O and O–O bonds, more stable occupancy rate in the Na e site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na + extraction and intercalation. Hence, SiO 2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dopants</subject><subject>Electrode materials</subject><subject>Energy Materials</subject><subject>Materials Science</subject><subject>Occupancy</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Sodium-ion batteries</subject><subject>Solid Mechanics</subject><subject>Unit cell</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc2KFDEURoMo2I6-gKuAKxcZb_46VcuhGceB0RFH1yGVutWdprrSJmmY2vkOvqFPYsYSZDYS-AKXc5ILHyGvOZxzAPMuc2i0ZMBbBrIBw-YnZMW1kUw1IJ-SFYAQTKg1f05e5LwHAG0EX5H95b3HccSpUD_70XVhDGWmcaCfBSvzEekn9-vHz02s8XGqcRdq3FLvyi72SA-uYApupENMdBe2O5bqhObYh9OBhTjRzpUHBPNL8mxwY8ZXf-8z8u395dfNB3Zze3W9ubhhXkleWN0a10bqppNdj37ojRMexVqaVinQAEr4xnjftUL6thear6U0qFqDnetlI8_Im-XdY4rfT5iL3cdTmuqXVgiteAuGq0qdL9TWjWjDNMSSnK-nx0PwccIh1PmFbqXSrTCyCm8fCZUpeF-27pSzvb778pgVC-tTzDnhYI8pHFyaLQf7UJhdCrO1MPunMDtXSS5SrvC0xfRv7_9YvwHk7Jt1</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Lijun</creator><creator>Wang, Yanzhi</creator><creator>Yang, Xiaheng</creator><creator>Wang, Jinlong</creator><creator>Yang, Xiduo</creator><creator>Tang, Jiantao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6700-0556</orcidid><orcidid>https://orcid.org/0000-0001-8163-5275</orcidid><orcidid>https://orcid.org/0000-0003-4388-2122</orcidid><orcidid>https://orcid.org/0000-0002-8324-7425</orcidid><orcidid>https://orcid.org/0000-0002-3255-1523</orcidid><orcidid>https://orcid.org/0000-0001-8228-8703</orcidid></search><sort><creationdate>20191001</creationdate><title>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</title><author>Wang, Lijun ; Wang, Yanzhi ; Yang, Xiaheng ; Wang, Jinlong ; Yang, Xiduo ; Tang, Jiantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-157e67358b3bdecfd7a2ce2637944050042c87ccb923c9d2516337e497ebad383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dopants</topic><topic>Electrode materials</topic><topic>Energy Materials</topic><topic>Materials Science</topic><topic>Occupancy</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Sodium-ion batteries</topic><topic>Solid Mechanics</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Wang, Yanzhi</creatorcontrib><creatorcontrib>Yang, Xiaheng</creatorcontrib><creatorcontrib>Wang, Jinlong</creatorcontrib><creatorcontrib>Yang, Xiduo</creatorcontrib><creatorcontrib>Tang, Jiantao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Wang, Yanzhi</au><au>Yang, Xiaheng</au><au>Wang, Jinlong</au><au>Yang, Xiduo</au><au>Tang, Jiantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>54</volume><issue>19</issue><spage>12723</spage><epage>12736</epage><pages>12723-12736</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>P2-type Na 2/3 Co 0.25 Mn 0.705 Si 0.045 O 2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P6 3 /mmc), in which Si 4+ ions substitute the Mn site of P2-Na 2/3 Co 0.25 Mn 0.75 O 2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g −1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g −1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, T M –O and O–O bonds, more stable occupancy rate in the Na e site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na + extraction and intercalation. Hence, SiO 2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03807-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6700-0556</orcidid><orcidid>https://orcid.org/0000-0001-8163-5275</orcidid><orcidid>https://orcid.org/0000-0003-4388-2122</orcidid><orcidid>https://orcid.org/0000-0002-8324-7425</orcidid><orcidid>https://orcid.org/0000-0002-3255-1523</orcidid><orcidid>https://orcid.org/0000-0001-8228-8703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-10, Vol.54 (19), p.12723-12736
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2254190714
source SpringerNature Journals
subjects Batteries
Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Dopants
Electrode materials
Energy Materials
Materials Science
Occupancy
Phase transitions
Polymer Sciences
Rechargeable batteries
Silicon
Silicon dioxide
Sodium-ion batteries
Solid Mechanics
Unit cell
title Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excellent%20cyclability%20of%20P2-type%20Na%E2%80%93Co%E2%80%93Mn%E2%80%93Si%E2%80%93O%20cathode%20material%20for%20high-rate%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Lijun&rft.date=2019-10-01&rft.volume=54&rft.issue=19&rft.spage=12723&rft.epage=12736&rft.pages=12723-12736&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03807-y&rft_dat=%3Cgale_proqu%3EA593459273%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254190714&rft_id=info:pmid/&rft_galeid=A593459273&rfr_iscdi=true