Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback

Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2019-01, Vol.37 (1), p.711-722
Hauptverfasser: Huu, Quynh Nguyen, Viet, Dung Cu, Thuy, Quynh Dao Thi, Quoc, Tao Ngo, Van, Canh Phuong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 722
container_issue 1
container_start_page 711
container_title Journal of intelligent & fuzzy systems
container_volume 37
creator Huu, Quynh Nguyen
Viet, Dung Cu
Thuy, Quynh Dao Thi
Quoc, Tao Ngo
Van, Canh Phuong
description Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.
doi_str_mv 10.3233/JIFS-181237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253998865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253998865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4gUscUQBrzd24iOqaCkq4lDgGjnxpk1Jk2CnRbw9qdrT_mg0o_kYuwXxgBLx8XU-XUaQgsTkjI0gTVSUGp2cD7vQcQQy1pfsKoSNEJAoKUaMZt526yi3gRwPtK3CriO_rw6nbRzf2qYq29rxmqxvqmbFy9bzamtXxD31vqK9rflv1a_58uvt5OOpHt5Nz0sil9vi-5pdlLYOdHOaY_Y5ff6YvESL99l88rSICqmhj1DnCKSFRYOAaDRIpQ2JODaxMEXqrFECnBRWUZGQigUgOEpLqTHJweKY3R19O9_-7Cj02abd-WaIzKRUaEyaajWo7o-qwrcheCqzzg-N_F8GIjtwzA4csyNH_AdpSWS3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253998865</pqid></control><display><type>article</type><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><source>EBSCOhost Business Source Complete</source><creator>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</creator><creatorcontrib>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</creatorcontrib><description>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-181237</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Euclidean geometry ; Feedback ; Image management ; Image retrieval ; Machine learning ; Manifolds (mathematics) ; Performance enhancement</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2019-01, Vol.37 (1), p.711-722</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</citedby><cites>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huu, Quynh Nguyen</creatorcontrib><creatorcontrib>Viet, Dung Cu</creatorcontrib><creatorcontrib>Thuy, Quynh Dao Thi</creatorcontrib><creatorcontrib>Quoc, Tao Ngo</creatorcontrib><creatorcontrib>Van, Canh Phuong</creatorcontrib><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</description><subject>Euclidean geometry</subject><subject>Feedback</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Performance enhancement</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4gUscUQBrzd24iOqaCkq4lDgGjnxpk1Jk2CnRbw9qdrT_mg0o_kYuwXxgBLx8XU-XUaQgsTkjI0gTVSUGp2cD7vQcQQy1pfsKoSNEJAoKUaMZt526yi3gRwPtK3CriO_rw6nbRzf2qYq29rxmqxvqmbFy9bzamtXxD31vqK9rflv1a_58uvt5OOpHt5Nz0sil9vi-5pdlLYOdHOaY_Y5ff6YvESL99l88rSICqmhj1DnCKSFRYOAaDRIpQ2JODaxMEXqrFECnBRWUZGQigUgOEpLqTHJweKY3R19O9_-7Cj02abd-WaIzKRUaEyaajWo7o-qwrcheCqzzg-N_F8GIjtwzA4csyNH_AdpSWS3</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huu, Quynh Nguyen</creator><creator>Viet, Dung Cu</creator><creator>Thuy, Quynh Dao Thi</creator><creator>Quoc, Tao Ngo</creator><creator>Van, Canh Phuong</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><author>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Euclidean geometry</topic><topic>Feedback</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huu, Quynh Nguyen</creatorcontrib><creatorcontrib>Viet, Dung Cu</creatorcontrib><creatorcontrib>Thuy, Quynh Dao Thi</creatorcontrib><creatorcontrib>Quoc, Tao Ngo</creatorcontrib><creatorcontrib>Van, Canh Phuong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huu, Quynh Nguyen</au><au>Viet, Dung Cu</au><au>Thuy, Quynh Dao Thi</au><au>Quoc, Tao Ngo</au><au>Van, Canh Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>1</issue><spage>711</spage><epage>722</epage><pages>711-722</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-181237</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (1), p.711-722
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2253998865
source EBSCOhost Business Source Complete
subjects Euclidean geometry
Feedback
Image management
Image retrieval
Machine learning
Manifolds (mathematics)
Performance enhancement
title Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-based%20semisupervised%20and%20manifold%20learning%20for%20image%20retrieval%20with%20SVM-based%20relevant%20feedback&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Huu,%20Quynh%20Nguyen&rft.date=2019-01-01&rft.volume=37&rft.issue=1&rft.spage=711&rft.epage=722&rft.pages=711-722&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-181237&rft_dat=%3Cproquest_cross%3E2253998865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253998865&rft_id=info:pmid/&rfr_iscdi=true