Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback
Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.37 (1), p.711-722 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 722 |
---|---|
container_issue | 1 |
container_start_page | 711 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 37 |
creator | Huu, Quynh Nguyen Viet, Dung Cu Thuy, Quynh Dao Thi Quoc, Tao Ngo Van, Canh Phuong |
description | Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system. |
doi_str_mv | 10.3233/JIFS-181237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253998865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253998865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4gUscUQBrzd24iOqaCkq4lDgGjnxpk1Jk2CnRbw9qdrT_mg0o_kYuwXxgBLx8XU-XUaQgsTkjI0gTVSUGp2cD7vQcQQy1pfsKoSNEJAoKUaMZt526yi3gRwPtK3CriO_rw6nbRzf2qYq29rxmqxvqmbFy9bzamtXxD31vqK9rflv1a_58uvt5OOpHt5Nz0sil9vi-5pdlLYOdHOaY_Y5ff6YvESL99l88rSICqmhj1DnCKSFRYOAaDRIpQ2JODaxMEXqrFECnBRWUZGQigUgOEpLqTHJweKY3R19O9_-7Cj02abd-WaIzKRUaEyaajWo7o-qwrcheCqzzg-N_F8GIjtwzA4csyNH_AdpSWS3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253998865</pqid></control><display><type>article</type><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><source>EBSCOhost Business Source Complete</source><creator>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</creator><creatorcontrib>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</creatorcontrib><description>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-181237</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Euclidean geometry ; Feedback ; Image management ; Image retrieval ; Machine learning ; Manifolds (mathematics) ; Performance enhancement</subject><ispartof>Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (1), p.711-722</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</citedby><cites>FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huu, Quynh Nguyen</creatorcontrib><creatorcontrib>Viet, Dung Cu</creatorcontrib><creatorcontrib>Thuy, Quynh Dao Thi</creatorcontrib><creatorcontrib>Quoc, Tao Ngo</creatorcontrib><creatorcontrib>Van, Canh Phuong</creatorcontrib><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><title>Journal of intelligent & fuzzy systems</title><description>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</description><subject>Euclidean geometry</subject><subject>Feedback</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Performance enhancement</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4gUscUQBrzd24iOqaCkq4lDgGjnxpk1Jk2CnRbw9qdrT_mg0o_kYuwXxgBLx8XU-XUaQgsTkjI0gTVSUGp2cD7vQcQQy1pfsKoSNEJAoKUaMZt526yi3gRwPtK3CriO_rw6nbRzf2qYq29rxmqxvqmbFy9bzamtXxD31vqK9rflv1a_58uvt5OOpHt5Nz0sil9vi-5pdlLYOdHOaY_Y5ff6YvESL99l88rSICqmhj1DnCKSFRYOAaDRIpQ2JODaxMEXqrFECnBRWUZGQigUgOEpLqTHJweKY3R19O9_-7Cj02abd-WaIzKRUaEyaajWo7o-qwrcheCqzzg-N_F8GIjtwzA4csyNH_AdpSWS3</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Huu, Quynh Nguyen</creator><creator>Viet, Dung Cu</creator><creator>Thuy, Quynh Dao Thi</creator><creator>Quoc, Tao Ngo</creator><creator>Van, Canh Phuong</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</title><author>Huu, Quynh Nguyen ; Viet, Dung Cu ; Thuy, Quynh Dao Thi ; Quoc, Tao Ngo ; Van, Canh Phuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-36b31e60a3931339612569e0449409c8da9501d20a5ec7e540131de8f2637b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Euclidean geometry</topic><topic>Feedback</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Performance enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huu, Quynh Nguyen</creatorcontrib><creatorcontrib>Viet, Dung Cu</creatorcontrib><creatorcontrib>Thuy, Quynh Dao Thi</creatorcontrib><creatorcontrib>Quoc, Tao Ngo</creatorcontrib><creatorcontrib>Van, Canh Phuong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huu, Quynh Nguyen</au><au>Viet, Dung Cu</au><au>Thuy, Quynh Dao Thi</au><au>Quoc, Tao Ngo</au><au>Van, Canh Phuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>37</volume><issue>1</issue><spage>711</spage><epage>722</epage><pages>711-722</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Over the years, many content-based image retrieval (CBIR) methods, which use SVM-based relevant feedback, are proposed to improve the performance of image retrieval systems. However, the performance of these methods is low due to the following limitations: (1) ignore the unlabeled samples; (2) only exploit the global Euclidean structure and (3) not taking advantage of the various useful aspects of the object. In order to solve the first problem, we propose a graph-based semisupervised learning (GSEL), which can add positive samples and construct balanced sets. With the second problem, we propose a manifold learning for dimensional reduction (MAL), which exploits the geometric properties of the manifold data. With the third problem, we propose a combination of classifiers by aspect (CCA), which exploits the various useful aspects of the object. Experimental results reported in the Corel Photo Gallery (with 31,695 images), which demonstrate the accuracy of our proposed method in improving the performance of the content-based image retrieval system.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-181237</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2019-01, Vol.37 (1), p.711-722 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2253998865 |
source | EBSCOhost Business Source Complete |
subjects | Euclidean geometry Feedback Image management Image retrieval Machine learning Manifolds (mathematics) Performance enhancement |
title | Graph-based semisupervised and manifold learning for image retrieval with SVM-based relevant feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-based%20semisupervised%20and%20manifold%20learning%20for%20image%20retrieval%20with%20SVM-based%20relevant%20feedback&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Huu,%20Quynh%20Nguyen&rft.date=2019-01-01&rft.volume=37&rft.issue=1&rft.spage=711&rft.epage=722&rft.pages=711-722&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-181237&rft_dat=%3Cproquest_cross%3E2253998865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253998865&rft_id=info:pmid/&rfr_iscdi=true |