Towards damage-consistent performance-based design of critical infrastructures
The objective of earthquake-resistant design of critical infrastructures like nuclear power plants or lifelines is to ensure the prevention of catastrophic disasters. Experience from recent past like the earthquake of Amatrice (2016) or the Napa earthquake of 2014 have shown that traditional code re...
Gespeichert in:
Veröffentlicht in: | International journal of computational methods and experimental measurements 2017-11, Vol.6 (3), p.933-943 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 943 |
---|---|
container_issue | 3 |
container_start_page | 933 |
container_title | International journal of computational methods and experimental measurements |
container_volume | 6 |
creator | KlÜgel, Jens-Uwe Stäuble-Akcay, Sunay |
description | The objective of earthquake-resistant design of critical infrastructures like nuclear power plants or lifelines is to ensure the prevention of catastrophic disasters. Experience from recent past like the earthquake of Amatrice (2016) or the Napa earthquake of 2014 have shown that traditional code requirements based on probabilistic seismic hazard maps are not able to prevent disasters. The purpose of probabilistic hazard assessment is to support risk analysis. The latter is used to separate tolerated residual risks from non-tolerable, more frequent risks. Therefore, these methods do not intend to provide protection against extreme events. Additionally, it is proven that the traditional hazard parameter used in probabilistic seismic hazard maps, peak ground acceleration (PGA), is not very suitable for the description of the physical impact of earthquakes on structures, systems and components. The only hazard parameter describing physical effects of earthquakes at least on macroseismic scale is intensity or in engineering units, intensity factors. The actual EMS-98 scale correlates reasonably well with the damage of structures classified into vulnerability classes. The availability of large databases of registered earthquake time-histories covering a wide range of site intensity values allows to model earthquake impact directly using dynamic time-history analysis methods. On this basis a methodology was developed that allows to design critical infrastructures for certain levels of seismic intensity directly. The methodology and some applications are presented. |
doi_str_mv | 10.2495/CMEM-V6-N5-933-943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253956586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253956586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-6dbb6a72ad7c441e83cece223087c3129aa9d3f71c90b36788b9e8be635d32843</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWGr_gKsB19FMXpJJllLqB7R1U7sNmeRNmdJOajKD-O-dUnF17-JwLxxC7kv2yIWRT_PVYkW3iq4lNQDUCLgiE86EokxKcf3fhbols5z3jDFeGSGlmZD1Jn67FHIR3NHtkPrY5Tb32PXFCVMT09F1HmntMoYiYG53XRGbwqe2b707FG3XJJf7NPh-SJjvyE3jDhlnfzklny-LzfyNLj9e3-fPS-o5CKAq1LVyFXeh8kKUqMGjR86B6cpDyY1zJkBTld6wGlSldW1Q16hABuBawJQ8XHZPKX4NmHu7j0PqxkvLuQQjldRqpPiF8inmnLCxp9QeXfqxJbNndfaszm6VXUs7qrOjOvgFFztiwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253956586</pqid></control><display><type>article</type><title>Towards damage-consistent performance-based design of critical infrastructures</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>KlÜgel, Jens-Uwe ; Stäuble-Akcay, Sunay</creator><creatorcontrib>KlÜgel, Jens-Uwe ; Stäuble-Akcay, Sunay</creatorcontrib><description>The objective of earthquake-resistant design of critical infrastructures like nuclear power plants or lifelines is to ensure the prevention of catastrophic disasters. Experience from recent past like the earthquake of Amatrice (2016) or the Napa earthquake of 2014 have shown that traditional code requirements based on probabilistic seismic hazard maps are not able to prevent disasters. The purpose of probabilistic hazard assessment is to support risk analysis. The latter is used to separate tolerated residual risks from non-tolerable, more frequent risks. Therefore, these methods do not intend to provide protection against extreme events. Additionally, it is proven that the traditional hazard parameter used in probabilistic seismic hazard maps, peak ground acceleration (PGA), is not very suitable for the description of the physical impact of earthquakes on structures, systems and components. The only hazard parameter describing physical effects of earthquakes at least on macroseismic scale is intensity or in engineering units, intensity factors. The actual EMS-98 scale correlates reasonably well with the damage of structures classified into vulnerability classes. The availability of large databases of registered earthquake time-histories covering a wide range of site intensity values allows to model earthquake impact directly using dynamic time-history analysis methods. On this basis a methodology was developed that allows to design critical infrastructures for certain levels of seismic intensity directly. The methodology and some applications are presented.</description><identifier>ISSN: 2046-0546</identifier><identifier>EISSN: 2046-0554</identifier><identifier>DOI: 10.2495/CMEM-V6-N5-933-943</identifier><language>eng</language><publisher>Southampton: W I T Press</publisher><subject>Acceleration ; Critical infrastructure ; Disasters ; Earthquake damage ; Earthquake resistance ; Earthquakes ; Hazard assessment ; Infrastructure ; Nuclear power plants ; Parameters ; Risk analysis ; Seismic design ; Seismic engineering ; Seismic hazard ; Structural damage</subject><ispartof>International journal of computational methods and experimental measurements, 2017-11, Vol.6 (3), p.933-943</ispartof><rights>2017. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.witpress.com/journals/cmem or in accordance with the terms at https://creativecommons.org/licenses/by/4.0/ (the “License”), if applicable</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-6dbb6a72ad7c441e83cece223087c3129aa9d3f71c90b36788b9e8be635d32843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>KlÜgel, Jens-Uwe</creatorcontrib><creatorcontrib>Stäuble-Akcay, Sunay</creatorcontrib><title>Towards damage-consistent performance-based design of critical infrastructures</title><title>International journal of computational methods and experimental measurements</title><description>The objective of earthquake-resistant design of critical infrastructures like nuclear power plants or lifelines is to ensure the prevention of catastrophic disasters. Experience from recent past like the earthquake of Amatrice (2016) or the Napa earthquake of 2014 have shown that traditional code requirements based on probabilistic seismic hazard maps are not able to prevent disasters. The purpose of probabilistic hazard assessment is to support risk analysis. The latter is used to separate tolerated residual risks from non-tolerable, more frequent risks. Therefore, these methods do not intend to provide protection against extreme events. Additionally, it is proven that the traditional hazard parameter used in probabilistic seismic hazard maps, peak ground acceleration (PGA), is not very suitable for the description of the physical impact of earthquakes on structures, systems and components. The only hazard parameter describing physical effects of earthquakes at least on macroseismic scale is intensity or in engineering units, intensity factors. The actual EMS-98 scale correlates reasonably well with the damage of structures classified into vulnerability classes. The availability of large databases of registered earthquake time-histories covering a wide range of site intensity values allows to model earthquake impact directly using dynamic time-history analysis methods. On this basis a methodology was developed that allows to design critical infrastructures for certain levels of seismic intensity directly. The methodology and some applications are presented.</description><subject>Acceleration</subject><subject>Critical infrastructure</subject><subject>Disasters</subject><subject>Earthquake damage</subject><subject>Earthquake resistance</subject><subject>Earthquakes</subject><subject>Hazard assessment</subject><subject>Infrastructure</subject><subject>Nuclear power plants</subject><subject>Parameters</subject><subject>Risk analysis</subject><subject>Seismic design</subject><subject>Seismic engineering</subject><subject>Seismic hazard</subject><subject>Structural damage</subject><issn>2046-0546</issn><issn>2046-0554</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1LAzEURYMoWGr_gKsB19FMXpJJllLqB7R1U7sNmeRNmdJOajKD-O-dUnF17-JwLxxC7kv2yIWRT_PVYkW3iq4lNQDUCLgiE86EokxKcf3fhbols5z3jDFeGSGlmZD1Jn67FHIR3NHtkPrY5Tb32PXFCVMT09F1HmntMoYiYG53XRGbwqe2b707FG3XJJf7NPh-SJjvyE3jDhlnfzklny-LzfyNLj9e3-fPS-o5CKAq1LVyFXeh8kKUqMGjR86B6cpDyY1zJkBTld6wGlSldW1Q16hABuBawJQ8XHZPKX4NmHu7j0PqxkvLuQQjldRqpPiF8inmnLCxp9QeXfqxJbNndfaszm6VXUs7qrOjOvgFFztiwQ</recordid><startdate>20171104</startdate><enddate>20171104</enddate><creator>KlÜgel, Jens-Uwe</creator><creator>Stäuble-Akcay, Sunay</creator><general>W I T Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171104</creationdate><title>Towards damage-consistent performance-based design of critical infrastructures</title><author>KlÜgel, Jens-Uwe ; Stäuble-Akcay, Sunay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-6dbb6a72ad7c441e83cece223087c3129aa9d3f71c90b36788b9e8be635d32843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceleration</topic><topic>Critical infrastructure</topic><topic>Disasters</topic><topic>Earthquake damage</topic><topic>Earthquake resistance</topic><topic>Earthquakes</topic><topic>Hazard assessment</topic><topic>Infrastructure</topic><topic>Nuclear power plants</topic><topic>Parameters</topic><topic>Risk analysis</topic><topic>Seismic design</topic><topic>Seismic engineering</topic><topic>Seismic hazard</topic><topic>Structural damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KlÜgel, Jens-Uwe</creatorcontrib><creatorcontrib>Stäuble-Akcay, Sunay</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of computational methods and experimental measurements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KlÜgel, Jens-Uwe</au><au>Stäuble-Akcay, Sunay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards damage-consistent performance-based design of critical infrastructures</atitle><jtitle>International journal of computational methods and experimental measurements</jtitle><date>2017-11-04</date><risdate>2017</risdate><volume>6</volume><issue>3</issue><spage>933</spage><epage>943</epage><pages>933-943</pages><issn>2046-0546</issn><eissn>2046-0554</eissn><abstract>The objective of earthquake-resistant design of critical infrastructures like nuclear power plants or lifelines is to ensure the prevention of catastrophic disasters. Experience from recent past like the earthquake of Amatrice (2016) or the Napa earthquake of 2014 have shown that traditional code requirements based on probabilistic seismic hazard maps are not able to prevent disasters. The purpose of probabilistic hazard assessment is to support risk analysis. The latter is used to separate tolerated residual risks from non-tolerable, more frequent risks. Therefore, these methods do not intend to provide protection against extreme events. Additionally, it is proven that the traditional hazard parameter used in probabilistic seismic hazard maps, peak ground acceleration (PGA), is not very suitable for the description of the physical impact of earthquakes on structures, systems and components. The only hazard parameter describing physical effects of earthquakes at least on macroseismic scale is intensity or in engineering units, intensity factors. The actual EMS-98 scale correlates reasonably well with the damage of structures classified into vulnerability classes. The availability of large databases of registered earthquake time-histories covering a wide range of site intensity values allows to model earthquake impact directly using dynamic time-history analysis methods. On this basis a methodology was developed that allows to design critical infrastructures for certain levels of seismic intensity directly. The methodology and some applications are presented.</abstract><cop>Southampton</cop><pub>W I T Press</pub><doi>10.2495/CMEM-V6-N5-933-943</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-0546 |
ispartof | International journal of computational methods and experimental measurements, 2017-11, Vol.6 (3), p.933-943 |
issn | 2046-0546 2046-0554 |
language | eng |
recordid | cdi_proquest_journals_2253956586 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acceleration Critical infrastructure Disasters Earthquake damage Earthquake resistance Earthquakes Hazard assessment Infrastructure Nuclear power plants Parameters Risk analysis Seismic design Seismic engineering Seismic hazard Structural damage |
title | Towards damage-consistent performance-based design of critical infrastructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20damage-consistent%20performance-based%20design%20of%20critical%20infrastructures&rft.jtitle=International%20journal%20of%20computational%20methods%20and%20experimental%20measurements&rft.au=Kl%C3%9Cgel,%20Jens-Uwe&rft.date=2017-11-04&rft.volume=6&rft.issue=3&rft.spage=933&rft.epage=943&rft.pages=933-943&rft.issn=2046-0546&rft.eissn=2046-0554&rft_id=info:doi/10.2495/CMEM-V6-N5-933-943&rft_dat=%3Cproquest_cross%3E2253956586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253956586&rft_id=info:pmid/&rfr_iscdi=true |