Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy
This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of he...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-08, Vol.41 (8), p.1-18, Article 306 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 41 |
creator | Kumar, Amit Tripathi, Rajat Singh, Ramayan |
description | This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy. |
doi_str_mv | 10.1007/s40430-019-1803-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253930038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253930038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8Bz9GkadLmuCzrH1jwoueQbZNulprUTOvab2-WCp48zZvhvRnml2W3lNxTQsoHKEjBCCZUYloRhqezbJGEwExIep60KCvMq7K6zK4ADoSwnAu-yL43foihn1BrvIl6cMEj7RsUTRsNwNzqbgIHKGkYdOtnVx-cH5DtwhEFi9YaIA299sF2o2vQ0Q17tIpxb7wbAel6cF9z8HSona6zC6s7MDe_dZm9P27e1s94-_r0sl5tcc24HDC1xPLCsGLHOLfpCU6JKTghvDSiIVrmprY0F4UWeS4kt3VR7SoipeTGNNqyZXY37-1j-BwNDOoQxpheApXnnEmWUFTJRWdXHQNANFb10X3oOClK1AmwmgGrBFidAKspZfI5A8nrWxP_Nv8f-gGvLIDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253930038</pqid></control><display><type>article</type><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</creator><creatorcontrib>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</creatorcontrib><description>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-019-1803-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Boundary conditions ; Chemical reactions ; Coefficient of friction ; Computational fluid dynamics ; Diffusion effects ; Energy dissipation ; Engineering ; Entropy ; Fluid flow ; Friction reduction ; Heat generation ; Mechanical Engineering ; Nanofluids ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Organic chemistry ; Parameters ; Partial differential equations ; Porous media ; Regression analysis ; Skin friction ; Stagnation point ; Technical Paper ; Thermal radiation ; Two dimensional flow ; Viscosity</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-08, Vol.41 (8), p.1-18, Article 306</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</citedby><cites>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-019-1803-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-019-1803-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Tripathi, Rajat</creatorcontrib><creatorcontrib>Singh, Ramayan</creatorcontrib><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</description><subject>Activation energy</subject><subject>Boundary conditions</subject><subject>Chemical reactions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Diffusion effects</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Fluid flow</subject><subject>Friction reduction</subject><subject>Heat generation</subject><subject>Mechanical Engineering</subject><subject>Nanofluids</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Porous media</subject><subject>Regression analysis</subject><subject>Skin friction</subject><subject>Stagnation point</subject><subject>Technical Paper</subject><subject>Thermal radiation</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYsouK5-AG8Bz9GkadLmuCzrH1jwoueQbZNulprUTOvab2-WCp48zZvhvRnml2W3lNxTQsoHKEjBCCZUYloRhqezbJGEwExIep60KCvMq7K6zK4ADoSwnAu-yL43foihn1BrvIl6cMEj7RsUTRsNwNzqbgIHKGkYdOtnVx-cH5DtwhEFi9YaIA299sF2o2vQ0Q17tIpxb7wbAel6cF9z8HSona6zC6s7MDe_dZm9P27e1s94-_r0sl5tcc24HDC1xPLCsGLHOLfpCU6JKTghvDSiIVrmprY0F4UWeS4kt3VR7SoipeTGNNqyZXY37-1j-BwNDOoQxpheApXnnEmWUFTJRWdXHQNANFb10X3oOClK1AmwmgGrBFidAKspZfI5A8nrWxP_Nv8f-gGvLIDA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kumar, Amit</creator><creator>Tripathi, Rajat</creator><creator>Singh, Ramayan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><author>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Boundary conditions</topic><topic>Chemical reactions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Diffusion effects</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Fluid flow</topic><topic>Friction reduction</topic><topic>Heat generation</topic><topic>Mechanical Engineering</topic><topic>Nanofluids</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Porous media</topic><topic>Regression analysis</topic><topic>Skin friction</topic><topic>Stagnation point</topic><topic>Technical Paper</topic><topic>Thermal radiation</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Tripathi, Rajat</creatorcontrib><creatorcontrib>Singh, Ramayan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Amit</au><au>Tripathi, Rajat</au><au>Singh, Ramayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>41</volume><issue>8</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>306</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-019-1803-y</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-08, Vol.41 (8), p.1-18, Article 306 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2253930038 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation energy Boundary conditions Chemical reactions Coefficient of friction Computational fluid dynamics Diffusion effects Energy dissipation Engineering Entropy Fluid flow Friction reduction Heat generation Mechanical Engineering Nanofluids Nonlinear differential equations Nonlinear equations Ordinary differential equations Organic chemistry Parameters Partial differential equations Porous media Regression analysis Skin friction Stagnation point Technical Paper Thermal radiation Two dimensional flow Viscosity |
title | Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20generation%20and%20regression%20analysis%20on%20stagnation%20point%20flow%20of%20Casson%20nanofluid%20with%20Arrhenius%20activation%20energy&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Kumar,%20Amit&rft.date=2019-08-01&rft.volume=41&rft.issue=8&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=306&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-019-1803-y&rft_dat=%3Cproquest_cross%3E2253930038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253930038&rft_id=info:pmid/&rfr_iscdi=true |