Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy

This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2019-08, Vol.41 (8), p.1-18, Article 306
Hauptverfasser: Kumar, Amit, Tripathi, Rajat, Singh, Ramayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 8
container_start_page 1
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 41
creator Kumar, Amit
Tripathi, Rajat
Singh, Ramayan
description This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.
doi_str_mv 10.1007/s40430-019-1803-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253930038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253930038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8Bz9GkadLmuCzrH1jwoueQbZNulprUTOvab2-WCp48zZvhvRnml2W3lNxTQsoHKEjBCCZUYloRhqezbJGEwExIep60KCvMq7K6zK4ADoSwnAu-yL43foihn1BrvIl6cMEj7RsUTRsNwNzqbgIHKGkYdOtnVx-cH5DtwhEFi9YaIA299sF2o2vQ0Q17tIpxb7wbAel6cF9z8HSona6zC6s7MDe_dZm9P27e1s94-_r0sl5tcc24HDC1xPLCsGLHOLfpCU6JKTghvDSiIVrmprY0F4UWeS4kt3VR7SoipeTGNNqyZXY37-1j-BwNDOoQxpheApXnnEmWUFTJRWdXHQNANFb10X3oOClK1AmwmgGrBFidAKspZfI5A8nrWxP_Nv8f-gGvLIDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253930038</pqid></control><display><type>article</type><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</creator><creatorcontrib>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</creatorcontrib><description>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-019-1803-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Boundary conditions ; Chemical reactions ; Coefficient of friction ; Computational fluid dynamics ; Diffusion effects ; Energy dissipation ; Engineering ; Entropy ; Fluid flow ; Friction reduction ; Heat generation ; Mechanical Engineering ; Nanofluids ; Nonlinear differential equations ; Nonlinear equations ; Ordinary differential equations ; Organic chemistry ; Parameters ; Partial differential equations ; Porous media ; Regression analysis ; Skin friction ; Stagnation point ; Technical Paper ; Thermal radiation ; Two dimensional flow ; Viscosity</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-08, Vol.41 (8), p.1-18, Article 306</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</citedby><cites>FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-019-1803-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-019-1803-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Tripathi, Rajat</creatorcontrib><creatorcontrib>Singh, Ramayan</creatorcontrib><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</description><subject>Activation energy</subject><subject>Boundary conditions</subject><subject>Chemical reactions</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Diffusion effects</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Fluid flow</subject><subject>Friction reduction</subject><subject>Heat generation</subject><subject>Mechanical Engineering</subject><subject>Nanofluids</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ordinary differential equations</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Porous media</subject><subject>Regression analysis</subject><subject>Skin friction</subject><subject>Stagnation point</subject><subject>Technical Paper</subject><subject>Thermal radiation</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYsouK5-AG8Bz9GkadLmuCzrH1jwoueQbZNulprUTOvab2-WCp48zZvhvRnml2W3lNxTQsoHKEjBCCZUYloRhqezbJGEwExIep60KCvMq7K6zK4ADoSwnAu-yL43foihn1BrvIl6cMEj7RsUTRsNwNzqbgIHKGkYdOtnVx-cH5DtwhEFi9YaIA299sF2o2vQ0Q17tIpxb7wbAel6cF9z8HSona6zC6s7MDe_dZm9P27e1s94-_r0sl5tcc24HDC1xPLCsGLHOLfpCU6JKTghvDSiIVrmprY0F4UWeS4kt3VR7SoipeTGNNqyZXY37-1j-BwNDOoQxpheApXnnEmWUFTJRWdXHQNANFb10X3oOClK1AmwmgGrBFidAKspZfI5A8nrWxP_Nv8f-gGvLIDA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kumar, Amit</creator><creator>Tripathi, Rajat</creator><creator>Singh, Ramayan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190801</creationdate><title>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</title><author>Kumar, Amit ; Tripathi, Rajat ; Singh, Ramayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1f0f54e34b355f678510e450057e6d0a92ecf1264a622695fc48b809995eedaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Boundary conditions</topic><topic>Chemical reactions</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Diffusion effects</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Fluid flow</topic><topic>Friction reduction</topic><topic>Heat generation</topic><topic>Mechanical Engineering</topic><topic>Nanofluids</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ordinary differential equations</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Porous media</topic><topic>Regression analysis</topic><topic>Skin friction</topic><topic>Stagnation point</topic><topic>Technical Paper</topic><topic>Thermal radiation</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Tripathi, Rajat</creatorcontrib><creatorcontrib>Singh, Ramayan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Amit</au><au>Tripathi, Rajat</au><au>Singh, Ramayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>41</volume><issue>8</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>306</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>This article presents the study of two-dimensional hydromagnetic stagnation point flow of Casson nanofluid over a stretching sheet in a non-Darcy porous medium with binary chemical reaction stimulated by Arrhenius activation energy. The energy equation is obtained by considering the production of heat due to Joule and viscous dissipations, heat generation/absorption and thermal radiation of the liquid. The flow model is developed and presented in the form of a system of nonlinear partial differential equations together with appropriate boundary conditions. The particle flux at the sheet is taken to be zero. The leading PDEs are transformed into dimensionless coupled ordinary differential equations (ODEs) by the usual procedure of transformation. The obtained ODEs are solved using optimal homotopy analysis method, and the effects of underlying parameters on the fluid velocity, temperature, concentration, entropy generation and Bejan number are demonstrated with the help of graphs. Also, the numerical values of skin friction coefficient, Nusselt number and Sherwood number are presented in tabular form. Linear as well as quadratic regression analysis for quantities of physical interest has also been carried out. Entropy generation is perceived to rise on increasing diffusive variable and Brinkman number, whereas Brownian diffusion has an adverse effect on it. Skin friction coefficient is reduced on increasing Casson fluid parameter and activation energy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-019-1803-y</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019-08, Vol.41 (8), p.1-18, Article 306
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2253930038
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Boundary conditions
Chemical reactions
Coefficient of friction
Computational fluid dynamics
Diffusion effects
Energy dissipation
Engineering
Entropy
Fluid flow
Friction reduction
Heat generation
Mechanical Engineering
Nanofluids
Nonlinear differential equations
Nonlinear equations
Ordinary differential equations
Organic chemistry
Parameters
Partial differential equations
Porous media
Regression analysis
Skin friction
Stagnation point
Technical Paper
Thermal radiation
Two dimensional flow
Viscosity
title Entropy generation and regression analysis on stagnation point flow of Casson nanofluid with Arrhenius activation energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20generation%20and%20regression%20analysis%20on%20stagnation%20point%20flow%20of%20Casson%20nanofluid%20with%20Arrhenius%20activation%20energy&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Kumar,%20Amit&rft.date=2019-08-01&rft.volume=41&rft.issue=8&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=306&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-019-1803-y&rft_dat=%3Cproquest_cross%3E2253930038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253930038&rft_id=info:pmid/&rfr_iscdi=true