Paired explicit Runge-Kutta schemes for stiff systems of equations

•A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.•This approach allows different RK schemes to be used in stiff/non-stiff regions.•P-ERK families are optimized and used for the Euler and Navier-Stokes equations.•Results demonstrate up to 5x speedup relative to classical Runge-Kutta me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-09, Vol.393, p.465-483
1. Verfasser: Vermeire, Brian C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue
container_start_page 465
container_title Journal of computational physics
container_volume 393
creator Vermeire, Brian C.
description •A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.•This approach allows different RK schemes to be used in stiff/non-stiff regions.•P-ERK families are optimized and used for the Euler and Navier-Stokes equations.•Results demonstrate up to 5x speedup relative to classical Runge-Kutta methods. In this paper we introduce a family of explicit Runge-Kutta methods, referred to as Paired Explicit Runge-Kutta (P-ERK) schemes, that are suitable for the solution of stiff systems of equations. The P-ERK approach allows Runge-Kutta schemes with a large number of derivative evaluations and large region of absolute stability to be used in the stiff parts of a domain, while schemes with relatively few derivative evaluations are used in non-stiff parts to reduce computational cost. Importantly, different P-ERK schemes with different numbers of derivative evaluations can be chosen based on local stiffness requirements and seamlessly paired with one another. We then verify that P-ERK schemes obtain their designed order of accuracy using the Euler equations with arbitrary combinations of schemes. We then demonstrate that P-ERK schemes can achieve speedup factors of approximately five for simulations using the Navier-Stokes equations including laminar and turbulent flow over an SD7003 airfoil. These results demonstrate that P-ERK schemes can significantly accelerate the solution of stiff systems of equations when using an explicit approach, and that they maintain accuracy with respect to conventional Runge-Kutta methods and available reference data.
doi_str_mv 10.1016/j.jcp.2019.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253846897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119303390</els_id><sourcerecordid>2253846897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-72a0db350fe0e444b35191720b6e80ad05ac28a5a5ae2deda5bb52407fda5ee83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz62TtGlTPKn4DxcU0XNI04mm7G67SSrutzfLepY5zDu8N_P4EXLOIGfAqss-782Yc2BNDiIHVh6QGYMGMl6z6pDMADjLmqZhx-QkhB4ApCjljNy8auexo_gzLp1xkb5N60_MnqcYNQ3mC1cYqB08DdFZS8M2RFwFOliKm0lHN6zDKTmyehnw7G_Pycf93fvtY7Z4eXi6vV5kpqhkzGquoWsLARYBy7JMkjWs5tBWKEF3ILThUos0yDvstGhbwUuobZKIspiTi_3d0Q-bCUNU_TD5dXqpOBeFLCvZ1MnF9i7jhxA8WjV6t9J-qxioHSrVq4RK7VApECqhSpmrfQZT_W-HXgXjcG2wS2xMVN3g_kn_Ak1HcXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253846897</pqid></control><display><type>article</type><title>Paired explicit Runge-Kutta schemes for stiff systems of equations</title><source>Elsevier ScienceDirect Journals</source><creator>Vermeire, Brian C.</creator><creatorcontrib>Vermeire, Brian C.</creatorcontrib><description>•A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.•This approach allows different RK schemes to be used in stiff/non-stiff regions.•P-ERK families are optimized and used for the Euler and Navier-Stokes equations.•Results demonstrate up to 5x speedup relative to classical Runge-Kutta methods. In this paper we introduce a family of explicit Runge-Kutta methods, referred to as Paired Explicit Runge-Kutta (P-ERK) schemes, that are suitable for the solution of stiff systems of equations. The P-ERK approach allows Runge-Kutta schemes with a large number of derivative evaluations and large region of absolute stability to be used in the stiff parts of a domain, while schemes with relatively few derivative evaluations are used in non-stiff parts to reduce computational cost. Importantly, different P-ERK schemes with different numbers of derivative evaluations can be chosen based on local stiffness requirements and seamlessly paired with one another. We then verify that P-ERK schemes obtain their designed order of accuracy using the Euler equations with arbitrary combinations of schemes. We then demonstrate that P-ERK schemes can achieve speedup factors of approximately five for simulations using the Navier-Stokes equations including laminar and turbulent flow over an SD7003 airfoil. These results demonstrate that P-ERK schemes can significantly accelerate the solution of stiff systems of equations when using an explicit approach, and that they maintain accuracy with respect to conventional Runge-Kutta methods and available reference data.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.05.014</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Aerodynamics ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Euler-Lagrange equation ; Explicit ; High ; Laminar flow ; Mathematical analysis ; Order ; Paired ; Runge-Kutta ; Runge-Kutta method ; Stability analysis ; Stiff ; Stiffness ; Turbulent flow ; Viscosity</subject><ispartof>Journal of computational physics, 2019-09, Vol.393, p.465-483</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-72a0db350fe0e444b35191720b6e80ad05ac28a5a5ae2deda5bb52407fda5ee83</citedby><cites>FETCH-LOGICAL-c368t-72a0db350fe0e444b35191720b6e80ad05ac28a5a5ae2deda5bb52407fda5ee83</cites><orcidid>0000-0003-3603-8644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Vermeire, Brian C.</creatorcontrib><title>Paired explicit Runge-Kutta schemes for stiff systems of equations</title><title>Journal of computational physics</title><description>•A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.•This approach allows different RK schemes to be used in stiff/non-stiff regions.•P-ERK families are optimized and used for the Euler and Navier-Stokes equations.•Results demonstrate up to 5x speedup relative to classical Runge-Kutta methods. In this paper we introduce a family of explicit Runge-Kutta methods, referred to as Paired Explicit Runge-Kutta (P-ERK) schemes, that are suitable for the solution of stiff systems of equations. The P-ERK approach allows Runge-Kutta schemes with a large number of derivative evaluations and large region of absolute stability to be used in the stiff parts of a domain, while schemes with relatively few derivative evaluations are used in non-stiff parts to reduce computational cost. Importantly, different P-ERK schemes with different numbers of derivative evaluations can be chosen based on local stiffness requirements and seamlessly paired with one another. We then verify that P-ERK schemes obtain their designed order of accuracy using the Euler equations with arbitrary combinations of schemes. We then demonstrate that P-ERK schemes can achieve speedup factors of approximately five for simulations using the Navier-Stokes equations including laminar and turbulent flow over an SD7003 airfoil. These results demonstrate that P-ERK schemes can significantly accelerate the solution of stiff systems of equations when using an explicit approach, and that they maintain accuracy with respect to conventional Runge-Kutta methods and available reference data.</description><subject>Aerodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Euler-Lagrange equation</subject><subject>Explicit</subject><subject>High</subject><subject>Laminar flow</subject><subject>Mathematical analysis</subject><subject>Order</subject><subject>Paired</subject><subject>Runge-Kutta</subject><subject>Runge-Kutta method</subject><subject>Stability analysis</subject><subject>Stiff</subject><subject>Stiffness</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz62TtGlTPKn4DxcU0XNI04mm7G67SSrutzfLepY5zDu8N_P4EXLOIGfAqss-782Yc2BNDiIHVh6QGYMGMl6z6pDMADjLmqZhx-QkhB4ApCjljNy8auexo_gzLp1xkb5N60_MnqcYNQ3mC1cYqB08DdFZS8M2RFwFOliKm0lHN6zDKTmyehnw7G_Pycf93fvtY7Z4eXi6vV5kpqhkzGquoWsLARYBy7JMkjWs5tBWKEF3ILThUos0yDvstGhbwUuobZKIspiTi_3d0Q-bCUNU_TD5dXqpOBeFLCvZ1MnF9i7jhxA8WjV6t9J-qxioHSrVq4RK7VApECqhSpmrfQZT_W-HXgXjcG2wS2xMVN3g_kn_Ak1HcXw</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Vermeire, Brian C.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3603-8644</orcidid></search><sort><creationdate>20190915</creationdate><title>Paired explicit Runge-Kutta schemes for stiff systems of equations</title><author>Vermeire, Brian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-72a0db350fe0e444b35191720b6e80ad05ac28a5a5ae2deda5bb52407fda5ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Euler-Lagrange equation</topic><topic>Explicit</topic><topic>High</topic><topic>Laminar flow</topic><topic>Mathematical analysis</topic><topic>Order</topic><topic>Paired</topic><topic>Runge-Kutta</topic><topic>Runge-Kutta method</topic><topic>Stability analysis</topic><topic>Stiff</topic><topic>Stiffness</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vermeire, Brian C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vermeire, Brian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paired explicit Runge-Kutta schemes for stiff systems of equations</atitle><jtitle>Journal of computational physics</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>393</volume><spage>465</spage><epage>483</epage><pages>465-483</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•A new Paired Explicit Runge-Kutta (P-ERK) scheme is introduced.•This approach allows different RK schemes to be used in stiff/non-stiff regions.•P-ERK families are optimized and used for the Euler and Navier-Stokes equations.•Results demonstrate up to 5x speedup relative to classical Runge-Kutta methods. In this paper we introduce a family of explicit Runge-Kutta methods, referred to as Paired Explicit Runge-Kutta (P-ERK) schemes, that are suitable for the solution of stiff systems of equations. The P-ERK approach allows Runge-Kutta schemes with a large number of derivative evaluations and large region of absolute stability to be used in the stiff parts of a domain, while schemes with relatively few derivative evaluations are used in non-stiff parts to reduce computational cost. Importantly, different P-ERK schemes with different numbers of derivative evaluations can be chosen based on local stiffness requirements and seamlessly paired with one another. We then verify that P-ERK schemes obtain their designed order of accuracy using the Euler equations with arbitrary combinations of schemes. We then demonstrate that P-ERK schemes can achieve speedup factors of approximately five for simulations using the Navier-Stokes equations including laminar and turbulent flow over an SD7003 airfoil. These results demonstrate that P-ERK schemes can significantly accelerate the solution of stiff systems of equations when using an explicit approach, and that they maintain accuracy with respect to conventional Runge-Kutta methods and available reference data.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.05.014</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3603-8644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-09, Vol.393, p.465-483
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2253846897
source Elsevier ScienceDirect Journals
subjects Aerodynamics
Computational fluid dynamics
Computational physics
Computer simulation
Euler-Lagrange equation
Explicit
High
Laminar flow
Mathematical analysis
Order
Paired
Runge-Kutta
Runge-Kutta method
Stability analysis
Stiff
Stiffness
Turbulent flow
Viscosity
title Paired explicit Runge-Kutta schemes for stiff systems of equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paired%20explicit%20Runge-Kutta%20schemes%20for%20stiff%20systems%20of%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vermeire,%20Brian%20C.&rft.date=2019-09-15&rft.volume=393&rft.spage=465&rft.epage=483&rft.pages=465-483&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.05.014&rft_dat=%3Cproquest_cross%3E2253846897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253846897&rft_id=info:pmid/&rft_els_id=S0021999119303390&rfr_iscdi=true