S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search

Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GeoInformatica 2020, Vol.24 (1), p.3-25
Hauptverfasser: Chen, Xinyu, Xu, Jiajie, Zhou, Rui, Zhao, Pengpeng, Liu, Chengfei, Fang, Junhua, Zhao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 3
container_title GeoInformatica
container_volume 24
creator Chen, Xinyu
Xu, Jiajie
Zhou, Rui
Zhao, Pengpeng
Liu, Chengfei
Fang, Junhua
Zhao, Lei
description Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S 2 R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S 2 R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.
doi_str_mv 10.1007/s10707-019-00372-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253641053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253641053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NpvGmxStQkHQeg7ZZLZubXfXJGttf73RFbx5mmHm_YAHoXNKLikh8ipQIonEhCpMCJcM7w_QiArJsSxYfph2PslxQaU4RichrAghIjlGaPHMnnD0ANeZybr6o424NAFcVjcOPutmmYXoext7D1nV-izAxjSxtthsTTqFzsTarLM32G1b79LbePt6io4qsw5w9jvH6OXudjG9x_PH2cP0Zo4ty1XEFRG8AgWGgXGlmFieV04YDoIXjE4EtcpWJVCeO8qKvLTMuoJSAEWUkk7xMboYcjvfvvcQol61vW9SpWYsheQ0NSQVG1TWtyF4qHTn643xO02J_qanB3o60dM_9PQ-mfhgCkncLMH_Rf_j-gLK_nOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253641053</pqid></control><display><type>article</type><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</creator><creatorcontrib>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</creatorcontrib><description>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S 2 R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S 2 R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-019-00372-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Data Structures and Information Theory ; Digital mapping ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Indexing ; Information processing ; Information Storage and Retrieval ; Methods ; Multimedia Information Systems ; Pruning ; Queries ; Query processing ; Searching ; Semantics ; Structural hierarchy ; Vectors</subject><ispartof>GeoInformatica, 2020, Vol.24 (1), p.3-25</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>GeoInformatica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</citedby><cites>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-019-00372-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-019-00372-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Xu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><creatorcontrib>Liu, Chengfei</creatorcontrib><creatorcontrib>Fang, Junhua</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S 2 R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S 2 R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital mapping</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Indexing</subject><subject>Information processing</subject><subject>Information Storage and Retrieval</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Pruning</subject><subject>Queries</subject><subject>Query processing</subject><subject>Searching</subject><subject>Semantics</subject><subject>Structural hierarchy</subject><subject>Vectors</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NpvGmxStQkHQeg7ZZLZubXfXJGttf73RFbx5mmHm_YAHoXNKLikh8ipQIonEhCpMCJcM7w_QiArJsSxYfph2PslxQaU4RichrAghIjlGaPHMnnD0ANeZybr6o424NAFcVjcOPutmmYXoext7D1nV-izAxjSxtthsTTqFzsTarLM32G1b79LbePt6io4qsw5w9jvH6OXudjG9x_PH2cP0Zo4ty1XEFRG8AgWGgXGlmFieV04YDoIXjE4EtcpWJVCeO8qKvLTMuoJSAEWUkk7xMboYcjvfvvcQol61vW9SpWYsheQ0NSQVG1TWtyF4qHTn643xO02J_qanB3o60dM_9PQ-mfhgCkncLMH_Rf_j-gLK_nOY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xinyu</creator><creator>Xu, Jiajie</creator><creator>Zhou, Rui</creator><creator>Zhao, Pengpeng</creator><creator>Liu, Chengfei</creator><creator>Fang, Junhua</creator><creator>Zhao, Lei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><author>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital mapping</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Indexing</topic><topic>Information processing</topic><topic>Information Storage and Retrieval</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Pruning</topic><topic>Queries</topic><topic>Query processing</topic><topic>Searching</topic><topic>Semantics</topic><topic>Structural hierarchy</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Xu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><creatorcontrib>Liu, Chengfei</creatorcontrib><creatorcontrib>Fang, Junhua</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinyu</au><au>Xu, Jiajie</au><au>Zhou, Rui</au><au>Zhao, Pengpeng</au><au>Liu, Chengfei</au><au>Fang, Junhua</au><au>Zhao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>3</spage><epage>25</epage><pages>3-25</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S 2 R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S 2 R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-019-00372-z</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1384-6175
ispartof GeoInformatica, 2020, Vol.24 (1), p.3-25
issn 1384-6175
1573-7624
language eng
recordid cdi_proquest_journals_2253641053
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Data Structures and Information Theory
Digital mapping
Earth and Environmental Science
Geographical Information Systems/Cartography
Geography
Indexing
Information processing
Information Storage and Retrieval
Methods
Multimedia Information Systems
Pruning
Queries
Query processing
Searching
Semantics
Structural hierarchy
Vectors
title S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S2R-tree:%20a%20pivot-based%20indexing%20structure%20for%20semantic-aware%20spatial%20keyword%20search&rft.jtitle=GeoInformatica&rft.au=Chen,%20Xinyu&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=25&rft.pages=3-25&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-019-00372-z&rft_dat=%3Cproquest_cross%3E2253641053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253641053&rft_id=info:pmid/&rfr_iscdi=true