S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search
Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper pro...
Gespeichert in:
Veröffentlicht in: | GeoInformatica 2020, Vol.24 (1), p.3-25 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | GeoInformatica |
container_volume | 24 |
creator | Chen, Xinyu Xu, Jiajie Zhou, Rui Zhao, Pengpeng Liu, Chengfei Fang, Junhua Zhao, Lei |
description | Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S
2
R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S
2
R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods. |
doi_str_mv | 10.1007/s10707-019-00372-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253641053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253641053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NpvGmxStQkHQeg7ZZLZubXfXJGttf73RFbx5mmHm_YAHoXNKLikh8ipQIonEhCpMCJcM7w_QiArJsSxYfph2PslxQaU4RichrAghIjlGaPHMnnD0ANeZybr6o424NAFcVjcOPutmmYXoext7D1nV-izAxjSxtthsTTqFzsTarLM32G1b79LbePt6io4qsw5w9jvH6OXudjG9x_PH2cP0Zo4ty1XEFRG8AgWGgXGlmFieV04YDoIXjE4EtcpWJVCeO8qKvLTMuoJSAEWUkk7xMboYcjvfvvcQol61vW9SpWYsheQ0NSQVG1TWtyF4qHTn643xO02J_qanB3o60dM_9PQ-mfhgCkncLMH_Rf_j-gLK_nOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253641053</pqid></control><display><type>article</type><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</creator><creatorcontrib>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</creatorcontrib><description>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S
2
R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S
2
R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-019-00372-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Data Structures and Information Theory ; Digital mapping ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Indexing ; Information processing ; Information Storage and Retrieval ; Methods ; Multimedia Information Systems ; Pruning ; Queries ; Query processing ; Searching ; Semantics ; Structural hierarchy ; Vectors</subject><ispartof>GeoInformatica, 2020, Vol.24 (1), p.3-25</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>GeoInformatica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</citedby><cites>FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-019-00372-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-019-00372-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Xu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><creatorcontrib>Liu, Chengfei</creatorcontrib><creatorcontrib>Fang, Junhua</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S
2
R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S
2
R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital mapping</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Indexing</subject><subject>Information processing</subject><subject>Information Storage and Retrieval</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Pruning</subject><subject>Queries</subject><subject>Query processing</subject><subject>Searching</subject><subject>Semantics</subject><subject>Structural hierarchy</subject><subject>Vectors</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NpvGmxStQkHQeg7ZZLZubXfXJGttf73RFbx5mmHm_YAHoXNKLikh8ipQIonEhCpMCJcM7w_QiArJsSxYfph2PslxQaU4RichrAghIjlGaPHMnnD0ANeZybr6o424NAFcVjcOPutmmYXoext7D1nV-izAxjSxtthsTTqFzsTarLM32G1b79LbePt6io4qsw5w9jvH6OXudjG9x_PH2cP0Zo4ty1XEFRG8AgWGgXGlmFieV04YDoIXjE4EtcpWJVCeO8qKvLTMuoJSAEWUkk7xMboYcjvfvvcQol61vW9SpWYsheQ0NSQVG1TWtyF4qHTn643xO02J_qanB3o60dM_9PQ-mfhgCkncLMH_Rf_j-gLK_nOY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xinyu</creator><creator>Xu, Jiajie</creator><creator>Zhou, Rui</creator><creator>Zhao, Pengpeng</creator><creator>Liu, Chengfei</creator><creator>Fang, Junhua</creator><creator>Zhao, Lei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2020</creationdate><title>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</title><author>Chen, Xinyu ; Xu, Jiajie ; Zhou, Rui ; Zhao, Pengpeng ; Liu, Chengfei ; Fang, Junhua ; Zhao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f053fe9ea2eadb58c34fd5a3e53621851c9cfbe134d1264bc2cd611ee90997d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital mapping</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Indexing</topic><topic>Information processing</topic><topic>Information Storage and Retrieval</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Pruning</topic><topic>Queries</topic><topic>Query processing</topic><topic>Searching</topic><topic>Semantics</topic><topic>Structural hierarchy</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinyu</creatorcontrib><creatorcontrib>Xu, Jiajie</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><creatorcontrib>Liu, Chengfei</creatorcontrib><creatorcontrib>Fang, Junhua</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinyu</au><au>Xu, Jiajie</au><au>Zhou, Rui</au><au>Zhao, Pengpeng</au><au>Liu, Chengfei</au><au>Fang, Junhua</au><au>Zhao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2020</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>3</spage><epage>25</epage><pages>3-25</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S
2
R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S
2
R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-019-00372-z</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-6175 |
ispartof | GeoInformatica, 2020, Vol.24 (1), p.3-25 |
issn | 1384-6175 1573-7624 |
language | eng |
recordid | cdi_proquest_journals_2253641053 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Science Data Structures and Information Theory Digital mapping Earth and Environmental Science Geographical Information Systems/Cartography Geography Indexing Information processing Information Storage and Retrieval Methods Multimedia Information Systems Pruning Queries Query processing Searching Semantics Structural hierarchy Vectors |
title | S2R-tree: a pivot-based indexing structure for semantic-aware spatial keyword search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S2R-tree:%20a%20pivot-based%20indexing%20structure%20for%20semantic-aware%20spatial%20keyword%20search&rft.jtitle=GeoInformatica&rft.au=Chen,%20Xinyu&rft.date=2020&rft.volume=24&rft.issue=1&rft.spage=3&rft.epage=25&rft.pages=3-25&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-019-00372-z&rft_dat=%3Cproquest_cross%3E2253641053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253641053&rft_id=info:pmid/&rfr_iscdi=true |