Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications

Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2019-07, Vol.67 (7), p.4406-4417
Hauptverfasser: Mazhar, Waqas, Klymyshyn, David M., Wells, Garth, Qureshi, Aqeel A., Jacobs, Michael, Achenbach, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4417
container_issue 7
container_start_page 4406
container_title IEEE transactions on antennas and propagation
container_volume 67
creator Mazhar, Waqas
Klymyshyn, David M.
Wells, Garth
Qureshi, Aqeel A.
Jacobs, Michael
Achenbach, Sven
description Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A 200~\mu \text{m} -thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm \times2.7 mm \times0.5 mm ( 0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} ). Four-element ( 1 \times 4 ) and eight-element ( 1 \times 8 ) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the 1 \times 8 GDRA array.
doi_str_mv 10.1109/TAP.2019.2907610
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2253473341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8674770</ieee_id><sourcerecordid>2253473341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuC561JNtlsjqVqFQoWqdjbMptOIGW7WZOt0n9vpMXT8A3vm4FHyC2jE8aoflhNlxNOmZ5wTVXJ6BkZMSmrnHPOzsmIUlblmpfrS3IV4zZFUQkxIuuF_8mXwVvXYjYNg7POOGizeXCb7NFhi2YIzmTvGH0Hgw_ZtBuw6yDBAQ4xs2m12-Wf8J36fd86A4PzXbwmFxbaiDenOSYfz0-r2Uu-eJu_zqaL3HDNhhwarCzKslEIBosSS1kBB2Zho0AUloMG5JWhkhnZ6MpKBKU0CtVwYQ0vxuT-eLcP_muPcai3fh-69LLmXBZCFYVgiaJHygQfY0Bb98HtIBxqRus_f3XyV__5q0_-UuXuWHGI-I9XpRJK0eIX5pJs8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253473341</pqid></control><display><type>article</type><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</creator><creatorcontrib>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</creatorcontrib><description><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2907610</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; artificial dielectrics ; Bandwidth ; Bandwidths ; Broadband ; deep X-ray lithography (DXRL) ; Dielectric resonator antennas ; dielectric resonator antennas (DRAs) ; Dielectrics ; Electric flux ; Electroforming ; Flux density ; Impedance ; Inclusions ; low profile ; Metals ; metamaterials ; microfabrication ; Millimeter waves ; mm-wave applications ; Permittivity ; Polymethyl methacrylate ; Radio antennas ; Resonators ; Substrate integrated waveguides ; substrate-integrated waveguide (SIW)</subject><ispartof>IEEE transactions on antennas and propagation, 2019-07, Vol.67 (7), p.4406-4417</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</citedby><cites>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</cites><orcidid>0000-0003-0488-1557 ; 0000-0001-6562-2079 ; 0000-0002-6891-789X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8674770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8674770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mazhar, Waqas</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Qureshi, Aqeel A.</creatorcontrib><creatorcontrib>Jacobs, Michael</creatorcontrib><creatorcontrib>Achenbach, Sven</creatorcontrib><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></description><subject>Antenna arrays</subject><subject>artificial dielectrics</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>deep X-ray lithography (DXRL)</subject><subject>Dielectric resonator antennas</subject><subject>dielectric resonator antennas (DRAs)</subject><subject>Dielectrics</subject><subject>Electric flux</subject><subject>Electroforming</subject><subject>Flux density</subject><subject>Impedance</subject><subject>Inclusions</subject><subject>low profile</subject><subject>Metals</subject><subject>metamaterials</subject><subject>microfabrication</subject><subject>Millimeter waves</subject><subject>mm-wave applications</subject><subject>Permittivity</subject><subject>Polymethyl methacrylate</subject><subject>Radio antennas</subject><subject>Resonators</subject><subject>Substrate integrated waveguides</subject><subject>substrate-integrated waveguide (SIW)</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuC561JNtlsjqVqFQoWqdjbMptOIGW7WZOt0n9vpMXT8A3vm4FHyC2jE8aoflhNlxNOmZ5wTVXJ6BkZMSmrnHPOzsmIUlblmpfrS3IV4zZFUQkxIuuF_8mXwVvXYjYNg7POOGizeXCb7NFhi2YIzmTvGH0Hgw_ZtBuw6yDBAQ4xs2m12-Wf8J36fd86A4PzXbwmFxbaiDenOSYfz0-r2Uu-eJu_zqaL3HDNhhwarCzKslEIBosSS1kBB2Zho0AUloMG5JWhkhnZ6MpKBKU0CtVwYQ0vxuT-eLcP_muPcai3fh-69LLmXBZCFYVgiaJHygQfY0Bb98HtIBxqRus_f3XyV__5q0_-UuXuWHGI-I9XpRJK0eIX5pJs8w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mazhar, Waqas</creator><creator>Klymyshyn, David M.</creator><creator>Wells, Garth</creator><creator>Qureshi, Aqeel A.</creator><creator>Jacobs, Michael</creator><creator>Achenbach, Sven</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0488-1557</orcidid><orcidid>https://orcid.org/0000-0001-6562-2079</orcidid><orcidid>https://orcid.org/0000-0002-6891-789X</orcidid></search><sort><creationdate>20190701</creationdate><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><author>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>artificial dielectrics</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>deep X-ray lithography (DXRL)</topic><topic>Dielectric resonator antennas</topic><topic>dielectric resonator antennas (DRAs)</topic><topic>Dielectrics</topic><topic>Electric flux</topic><topic>Electroforming</topic><topic>Flux density</topic><topic>Impedance</topic><topic>Inclusions</topic><topic>low profile</topic><topic>Metals</topic><topic>metamaterials</topic><topic>microfabrication</topic><topic>Millimeter waves</topic><topic>mm-wave applications</topic><topic>Permittivity</topic><topic>Polymethyl methacrylate</topic><topic>Radio antennas</topic><topic>Resonators</topic><topic>Substrate integrated waveguides</topic><topic>substrate-integrated waveguide (SIW)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazhar, Waqas</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Qureshi, Aqeel A.</creatorcontrib><creatorcontrib>Jacobs, Michael</creatorcontrib><creatorcontrib>Achenbach, Sven</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mazhar, Waqas</au><au>Klymyshyn, David M.</au><au>Wells, Garth</au><au>Qureshi, Aqeel A.</au><au>Jacobs, Michael</au><au>Achenbach, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>67</volume><issue>7</issue><spage>4406</spage><epage>4417</epage><pages>4406-4417</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2907610</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0488-1557</orcidid><orcidid>https://orcid.org/0000-0001-6562-2079</orcidid><orcidid>https://orcid.org/0000-0002-6891-789X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2019-07, Vol.67 (7), p.4406-4417
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_2253473341
source IEEE Electronic Library (IEL)
subjects Antenna arrays
artificial dielectrics
Bandwidth
Bandwidths
Broadband
deep X-ray lithography (DXRL)
Dielectric resonator antennas
dielectric resonator antennas (DRAs)
Dielectrics
Electric flux
Electroforming
Flux density
Impedance
Inclusions
low profile
Metals
metamaterials
microfabrication
Millimeter waves
mm-wave applications
Permittivity
Polymethyl methacrylate
Radio antennas
Resonators
Substrate integrated waveguides
substrate-integrated waveguide (SIW)
title Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Profile%20Artificial%20Grid%20Dielectric%20Resonator%20Antenna%20Arrays%20for%20mm-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Mazhar,%20Waqas&rft.date=2019-07-01&rft.volume=67&rft.issue=7&rft.spage=4406&rft.epage=4417&rft.pages=4406-4417&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2907610&rft_dat=%3Cproquest_RIE%3E2253473341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253473341&rft_id=info:pmid/&rft_ieee_id=8674770&rfr_iscdi=true