Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications
Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-07, Vol.67 (7), p.4406-4417 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4417 |
---|---|
container_issue | 7 |
container_start_page | 4406 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 67 |
creator | Mazhar, Waqas Klymyshyn, David M. Wells, Garth Qureshi, Aqeel A. Jacobs, Michael Achenbach, Sven |
description | Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A 200~\mu \text{m} -thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm \times2.7 mm \times0.5 mm ( 0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} ). Four-element ( 1 \times 4 ) and eight-element ( 1 \times 8 ) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the 1 \times 8 GDRA array. |
doi_str_mv | 10.1109/TAP.2019.2907610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2253473341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8674770</ieee_id><sourcerecordid>2253473341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuC561JNtlsjqVqFQoWqdjbMptOIGW7WZOt0n9vpMXT8A3vm4FHyC2jE8aoflhNlxNOmZ5wTVXJ6BkZMSmrnHPOzsmIUlblmpfrS3IV4zZFUQkxIuuF_8mXwVvXYjYNg7POOGizeXCb7NFhi2YIzmTvGH0Hgw_ZtBuw6yDBAQ4xs2m12-Wf8J36fd86A4PzXbwmFxbaiDenOSYfz0-r2Uu-eJu_zqaL3HDNhhwarCzKslEIBosSS1kBB2Zho0AUloMG5JWhkhnZ6MpKBKU0CtVwYQ0vxuT-eLcP_muPcai3fh-69LLmXBZCFYVgiaJHygQfY0Bb98HtIBxqRus_f3XyV__5q0_-UuXuWHGI-I9XpRJK0eIX5pJs8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253473341</pqid></control><display><type>article</type><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</creator><creatorcontrib>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</creatorcontrib><description><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2907610</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; artificial dielectrics ; Bandwidth ; Bandwidths ; Broadband ; deep X-ray lithography (DXRL) ; Dielectric resonator antennas ; dielectric resonator antennas (DRAs) ; Dielectrics ; Electric flux ; Electroforming ; Flux density ; Impedance ; Inclusions ; low profile ; Metals ; metamaterials ; microfabrication ; Millimeter waves ; mm-wave applications ; Permittivity ; Polymethyl methacrylate ; Radio antennas ; Resonators ; Substrate integrated waveguides ; substrate-integrated waveguide (SIW)</subject><ispartof>IEEE transactions on antennas and propagation, 2019-07, Vol.67 (7), p.4406-4417</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</citedby><cites>FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</cites><orcidid>0000-0003-0488-1557 ; 0000-0001-6562-2079 ; 0000-0002-6891-789X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8674770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8674770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mazhar, Waqas</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Qureshi, Aqeel A.</creatorcontrib><creatorcontrib>Jacobs, Michael</creatorcontrib><creatorcontrib>Achenbach, Sven</creatorcontrib><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></description><subject>Antenna arrays</subject><subject>artificial dielectrics</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>deep X-ray lithography (DXRL)</subject><subject>Dielectric resonator antennas</subject><subject>dielectric resonator antennas (DRAs)</subject><subject>Dielectrics</subject><subject>Electric flux</subject><subject>Electroforming</subject><subject>Flux density</subject><subject>Impedance</subject><subject>Inclusions</subject><subject>low profile</subject><subject>Metals</subject><subject>metamaterials</subject><subject>microfabrication</subject><subject>Millimeter waves</subject><subject>mm-wave applications</subject><subject>Permittivity</subject><subject>Polymethyl methacrylate</subject><subject>Radio antennas</subject><subject>Resonators</subject><subject>Substrate integrated waveguides</subject><subject>substrate-integrated waveguide (SIW)</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuC561JNtlsjqVqFQoWqdjbMptOIGW7WZOt0n9vpMXT8A3vm4FHyC2jE8aoflhNlxNOmZ5wTVXJ6BkZMSmrnHPOzsmIUlblmpfrS3IV4zZFUQkxIuuF_8mXwVvXYjYNg7POOGizeXCb7NFhi2YIzmTvGH0Hgw_ZtBuw6yDBAQ4xs2m12-Wf8J36fd86A4PzXbwmFxbaiDenOSYfz0-r2Uu-eJu_zqaL3HDNhhwarCzKslEIBosSS1kBB2Zho0AUloMG5JWhkhnZ6MpKBKU0CtVwYQ0vxuT-eLcP_muPcai3fh-69LLmXBZCFYVgiaJHygQfY0Bb98HtIBxqRus_f3XyV__5q0_-UuXuWHGI-I9XpRJK0eIX5pJs8w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Mazhar, Waqas</creator><creator>Klymyshyn, David M.</creator><creator>Wells, Garth</creator><creator>Qureshi, Aqeel A.</creator><creator>Jacobs, Michael</creator><creator>Achenbach, Sven</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0488-1557</orcidid><orcidid>https://orcid.org/0000-0001-6562-2079</orcidid><orcidid>https://orcid.org/0000-0002-6891-789X</orcidid></search><sort><creationdate>20190701</creationdate><title>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</title><author>Mazhar, Waqas ; Klymyshyn, David M. ; Wells, Garth ; Qureshi, Aqeel A. ; Jacobs, Michael ; Achenbach, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-abe8fe56b7eace36e658a2a1fad7a43f2a9ae28c051c5b98f5ea779e47b24fc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>artificial dielectrics</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>deep X-ray lithography (DXRL)</topic><topic>Dielectric resonator antennas</topic><topic>dielectric resonator antennas (DRAs)</topic><topic>Dielectrics</topic><topic>Electric flux</topic><topic>Electroforming</topic><topic>Flux density</topic><topic>Impedance</topic><topic>Inclusions</topic><topic>low profile</topic><topic>Metals</topic><topic>metamaterials</topic><topic>microfabrication</topic><topic>Millimeter waves</topic><topic>mm-wave applications</topic><topic>Permittivity</topic><topic>Polymethyl methacrylate</topic><topic>Radio antennas</topic><topic>Resonators</topic><topic>Substrate integrated waveguides</topic><topic>substrate-integrated waveguide (SIW)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazhar, Waqas</creatorcontrib><creatorcontrib>Klymyshyn, David M.</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Qureshi, Aqeel A.</creatorcontrib><creatorcontrib>Jacobs, Michael</creatorcontrib><creatorcontrib>Achenbach, Sven</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mazhar, Waqas</au><au>Klymyshyn, David M.</au><au>Wells, Garth</au><au>Qureshi, Aqeel A.</au><au>Jacobs, Michael</au><au>Achenbach, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>67</volume><issue>7</issue><spage>4406</spage><epage>4417</epage><pages>4406-4417</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A <inline-formula> <tex-math notation="LaTeX">200~\mu \text{m} </tex-math></inline-formula>-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm <inline-formula> <tex-math notation="LaTeX">\times2.7 </tex-math></inline-formula> mm <inline-formula> <tex-math notation="LaTeX">\times0.5 </tex-math></inline-formula> mm (<inline-formula> <tex-math notation="LaTeX">0.29\lambda _{\mathrm {o}}\times 0.29\lambda _{\mathrm {o}}\times 0.05\lambda _{\mathrm {o}} </tex-math></inline-formula>). Four-element (<inline-formula> <tex-math notation="LaTeX">1 \times 4 </tex-math></inline-formula>) and eight-element (<inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula>) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the <inline-formula> <tex-math notation="LaTeX">1 \times 8 </tex-math></inline-formula> GDRA array.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2907610</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0488-1557</orcidid><orcidid>https://orcid.org/0000-0001-6562-2079</orcidid><orcidid>https://orcid.org/0000-0002-6891-789X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2019-07, Vol.67 (7), p.4406-4417 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_2253473341 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays artificial dielectrics Bandwidth Bandwidths Broadband deep X-ray lithography (DXRL) Dielectric resonator antennas dielectric resonator antennas (DRAs) Dielectrics Electric flux Electroforming Flux density Impedance Inclusions low profile Metals metamaterials microfabrication Millimeter waves mm-wave applications Permittivity Polymethyl methacrylate Radio antennas Resonators Substrate integrated waveguides substrate-integrated waveguide (SIW) |
title | Low-Profile Artificial Grid Dielectric Resonator Antenna Arrays for mm-Wave Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Profile%20Artificial%20Grid%20Dielectric%20Resonator%20Antenna%20Arrays%20for%20mm-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Mazhar,%20Waqas&rft.date=2019-07-01&rft.volume=67&rft.issue=7&rft.spage=4406&rft.epage=4417&rft.pages=4406-4417&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2907610&rft_dat=%3Cproquest_RIE%3E2253473341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253473341&rft_id=info:pmid/&rft_ieee_id=8674770&rfr_iscdi=true |