Dynamic Power Management for Neuromorphic Many-Core Systems
This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-08, Vol.66 (8), p.2973-2986 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2986 |
---|---|
container_issue | 8 |
container_start_page | 2973 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 66 |
creator | Hoppner, Sebastian Vogginger, Bernhard Yan, Yexin Dixius, Andreas Scholze, Stefan Partzsch, Johannes Neumarker, Felix Hartmann, Stephan Schiefer, Stefan Ellguth, Georg Cederstroem, Love Plana, Luis A. Garside, Jim Furber, Steve Mayr, Christian |
description | This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system. |
doi_str_mv | 10.1109/TCSI.2019.2911898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2253468526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8701528</ieee_id><sourcerecordid>2253468526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c0ms3iS-FWoH9B6XjbJRFtMtu6mSP69CS2e5oV53hl4GLsEPgPg-maVL-czwUHPhAZAjUdsAkphzJGnx2NOdIxS4Ck7C2HDudBcwoTd3vetbdZl9O5-yUcvtrWf1FDbRbXz0SvtvGuc334NxLDr49x5ipZ96KgJ5-yktt-BLg5zyj4eH1b5c7x4e5rnd4u4lJh0cSYtL0oBUlsNVaYEYFmgspWqCwskaigxo0SUnLitpEUBCVZQCFWnNc-0nLLr_d2tdz87Cp3ZuJ1vh5dGCCWTFJVIBwr2VOldCJ5qs_XrxvreADejIzM6MqMjc3A0dK72nTUR_fOYcVAC5R9A4WHL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253468526</pqid></control><display><type>article</type><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</creator><creatorcontrib>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</creatorcontrib><description>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2911898</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Clocks ; CMOS ; Computer architecture ; Computer simulation ; DVFS ; Electric potential ; MPSoC ; neuromorphic computing ; Neuromorphics ; Neurons ; Power consumption ; Power management ; Power system management ; Product development ; Real time operation ; Reduction ; Software ; SpiNNaker2 ; Synapses ; synfire chain ; Workload</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2019-08, Vol.66 (8), p.2973-2986</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</citedby><cites>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</cites><orcidid>0000-0002-6524-3367 ; 0000-0002-4267-7015 ; 0000-0002-6286-5064 ; 0000-0001-6012-8012 ; 0000-0001-9042-5405 ; 0000-0002-9938-2736 ; 0000-0002-6113-3929 ; 0000-0001-5227-6533 ; 0000-0001-8812-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8701528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8701528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoppner, Sebastian</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Yan, Yexin</creatorcontrib><creatorcontrib>Dixius, Andreas</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Neumarker, Felix</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Ellguth, Georg</creatorcontrib><creatorcontrib>Cederstroem, Love</creatorcontrib><creatorcontrib>Plana, Luis A.</creatorcontrib><creatorcontrib>Garside, Jim</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</description><subject>Architecture</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>DVFS</subject><subject>Electric potential</subject><subject>MPSoC</subject><subject>neuromorphic computing</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Power system management</subject><subject>Product development</subject><subject>Real time operation</subject><subject>Reduction</subject><subject>Software</subject><subject>SpiNNaker2</subject><subject>Synapses</subject><subject>synfire chain</subject><subject>Workload</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c0ms3iS-FWoH9B6XjbJRFtMtu6mSP69CS2e5oV53hl4GLsEPgPg-maVL-czwUHPhAZAjUdsAkphzJGnx2NOdIxS4Ck7C2HDudBcwoTd3vetbdZl9O5-yUcvtrWf1FDbRbXz0SvtvGuc334NxLDr49x5ipZ96KgJ5-yktt-BLg5zyj4eH1b5c7x4e5rnd4u4lJh0cSYtL0oBUlsNVaYEYFmgspWqCwskaigxo0SUnLitpEUBCVZQCFWnNc-0nLLr_d2tdz87Cp3ZuJ1vh5dGCCWTFJVIBwr2VOldCJ5qs_XrxvreADejIzM6MqMjc3A0dK72nTUR_fOYcVAC5R9A4WHL</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hoppner, Sebastian</creator><creator>Vogginger, Bernhard</creator><creator>Yan, Yexin</creator><creator>Dixius, Andreas</creator><creator>Scholze, Stefan</creator><creator>Partzsch, Johannes</creator><creator>Neumarker, Felix</creator><creator>Hartmann, Stephan</creator><creator>Schiefer, Stefan</creator><creator>Ellguth, Georg</creator><creator>Cederstroem, Love</creator><creator>Plana, Luis A.</creator><creator>Garside, Jim</creator><creator>Furber, Steve</creator><creator>Mayr, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6524-3367</orcidid><orcidid>https://orcid.org/0000-0002-4267-7015</orcidid><orcidid>https://orcid.org/0000-0002-6286-5064</orcidid><orcidid>https://orcid.org/0000-0001-6012-8012</orcidid><orcidid>https://orcid.org/0000-0001-9042-5405</orcidid><orcidid>https://orcid.org/0000-0002-9938-2736</orcidid><orcidid>https://orcid.org/0000-0002-6113-3929</orcidid><orcidid>https://orcid.org/0000-0001-5227-6533</orcidid><orcidid>https://orcid.org/0000-0001-8812-4742</orcidid></search><sort><creationdate>20190801</creationdate><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><author>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>DVFS</topic><topic>Electric potential</topic><topic>MPSoC</topic><topic>neuromorphic computing</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Power system management</topic><topic>Product development</topic><topic>Real time operation</topic><topic>Reduction</topic><topic>Software</topic><topic>SpiNNaker2</topic><topic>Synapses</topic><topic>synfire chain</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoppner, Sebastian</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Yan, Yexin</creatorcontrib><creatorcontrib>Dixius, Andreas</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Neumarker, Felix</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Ellguth, Georg</creatorcontrib><creatorcontrib>Cederstroem, Love</creatorcontrib><creatorcontrib>Plana, Luis A.</creatorcontrib><creatorcontrib>Garside, Jim</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoppner, Sebastian</au><au>Vogginger, Bernhard</au><au>Yan, Yexin</au><au>Dixius, Andreas</au><au>Scholze, Stefan</au><au>Partzsch, Johannes</au><au>Neumarker, Felix</au><au>Hartmann, Stephan</au><au>Schiefer, Stefan</au><au>Ellguth, Georg</au><au>Cederstroem, Love</au><au>Plana, Luis A.</au><au>Garside, Jim</au><au>Furber, Steve</au><au>Mayr, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Power Management for Neuromorphic Many-Core Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>66</volume><issue>8</issue><spage>2973</spage><epage>2986</epage><pages>2973-2986</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2911898</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6524-3367</orcidid><orcidid>https://orcid.org/0000-0002-4267-7015</orcidid><orcidid>https://orcid.org/0000-0002-6286-5064</orcidid><orcidid>https://orcid.org/0000-0001-6012-8012</orcidid><orcidid>https://orcid.org/0000-0001-9042-5405</orcidid><orcidid>https://orcid.org/0000-0002-9938-2736</orcidid><orcidid>https://orcid.org/0000-0002-6113-3929</orcidid><orcidid>https://orcid.org/0000-0001-5227-6533</orcidid><orcidid>https://orcid.org/0000-0001-8812-4742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2019-08, Vol.66 (8), p.2973-2986 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_2253468526 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Clocks CMOS Computer architecture Computer simulation DVFS Electric potential MPSoC neuromorphic computing Neuromorphics Neurons Power consumption Power management Power system management Product development Real time operation Reduction Software SpiNNaker2 Synapses synfire chain Workload |
title | Dynamic Power Management for Neuromorphic Many-Core Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Power%20Management%20for%20Neuromorphic%20Many-Core%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Hoppner,%20Sebastian&rft.date=2019-08-01&rft.volume=66&rft.issue=8&rft.spage=2973&rft.epage=2986&rft.pages=2973-2986&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2911898&rft_dat=%3Cproquest_RIE%3E2253468526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253468526&rft_id=info:pmid/&rft_ieee_id=8701528&rfr_iscdi=true |