Dynamic Power Management for Neuromorphic Many-Core Systems

This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-08, Vol.66 (8), p.2973-2986
Hauptverfasser: Hoppner, Sebastian, Vogginger, Bernhard, Yan, Yexin, Dixius, Andreas, Scholze, Stefan, Partzsch, Johannes, Neumarker, Felix, Hartmann, Stephan, Schiefer, Stefan, Ellguth, Georg, Cederstroem, Love, Plana, Luis A., Garside, Jim, Furber, Steve, Mayr, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2986
container_issue 8
container_start_page 2973
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 66
creator Hoppner, Sebastian
Vogginger, Bernhard
Yan, Yexin
Dixius, Andreas
Scholze, Stefan
Partzsch, Johannes
Neumarker, Felix
Hartmann, Stephan
Schiefer, Stefan
Ellguth, Georg
Cederstroem, Love
Plana, Luis A.
Garside, Jim
Furber, Steve
Mayr, Christian
description This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.
doi_str_mv 10.1109/TCSI.2019.2911898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2253468526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8701528</ieee_id><sourcerecordid>2253468526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c0ms3iS-FWoH9B6XjbJRFtMtu6mSP69CS2e5oV53hl4GLsEPgPg-maVL-czwUHPhAZAjUdsAkphzJGnx2NOdIxS4Ck7C2HDudBcwoTd3vetbdZl9O5-yUcvtrWf1FDbRbXz0SvtvGuc334NxLDr49x5ipZ96KgJ5-yktt-BLg5zyj4eH1b5c7x4e5rnd4u4lJh0cSYtL0oBUlsNVaYEYFmgspWqCwskaigxo0SUnLitpEUBCVZQCFWnNc-0nLLr_d2tdz87Cp3ZuJ1vh5dGCCWTFJVIBwr2VOldCJ5qs_XrxvreADejIzM6MqMjc3A0dK72nTUR_fOYcVAC5R9A4WHL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253468526</pqid></control><display><type>article</type><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</creator><creatorcontrib>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</creatorcontrib><description>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2911898</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Clocks ; CMOS ; Computer architecture ; Computer simulation ; DVFS ; Electric potential ; MPSoC ; neuromorphic computing ; Neuromorphics ; Neurons ; Power consumption ; Power management ; Power system management ; Product development ; Real time operation ; Reduction ; Software ; SpiNNaker2 ; Synapses ; synfire chain ; Workload</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2019-08, Vol.66 (8), p.2973-2986</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</citedby><cites>FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</cites><orcidid>0000-0002-6524-3367 ; 0000-0002-4267-7015 ; 0000-0002-6286-5064 ; 0000-0001-6012-8012 ; 0000-0001-9042-5405 ; 0000-0002-9938-2736 ; 0000-0002-6113-3929 ; 0000-0001-5227-6533 ; 0000-0001-8812-4742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8701528$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8701528$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoppner, Sebastian</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Yan, Yexin</creatorcontrib><creatorcontrib>Dixius, Andreas</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Neumarker, Felix</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Ellguth, Georg</creatorcontrib><creatorcontrib>Cederstroem, Love</creatorcontrib><creatorcontrib>Plana, Luis A.</creatorcontrib><creatorcontrib>Garside, Jim</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</description><subject>Architecture</subject><subject>Clocks</subject><subject>CMOS</subject><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>DVFS</subject><subject>Electric potential</subject><subject>MPSoC</subject><subject>neuromorphic computing</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Power system management</subject><subject>Product development</subject><subject>Real time operation</subject><subject>Reduction</subject><subject>Software</subject><subject>SpiNNaker2</subject><subject>Synapses</subject><subject>synfire chain</subject><subject>Workload</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c0ms3iS-FWoH9B6XjbJRFtMtu6mSP69CS2e5oV53hl4GLsEPgPg-maVL-czwUHPhAZAjUdsAkphzJGnx2NOdIxS4Ck7C2HDudBcwoTd3vetbdZl9O5-yUcvtrWf1FDbRbXz0SvtvGuc334NxLDr49x5ipZ96KgJ5-yktt-BLg5zyj4eH1b5c7x4e5rnd4u4lJh0cSYtL0oBUlsNVaYEYFmgspWqCwskaigxo0SUnLitpEUBCVZQCFWnNc-0nLLr_d2tdz87Cp3ZuJ1vh5dGCCWTFJVIBwr2VOldCJ5qs_XrxvreADejIzM6MqMjc3A0dK72nTUR_fOYcVAC5R9A4WHL</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hoppner, Sebastian</creator><creator>Vogginger, Bernhard</creator><creator>Yan, Yexin</creator><creator>Dixius, Andreas</creator><creator>Scholze, Stefan</creator><creator>Partzsch, Johannes</creator><creator>Neumarker, Felix</creator><creator>Hartmann, Stephan</creator><creator>Schiefer, Stefan</creator><creator>Ellguth, Georg</creator><creator>Cederstroem, Love</creator><creator>Plana, Luis A.</creator><creator>Garside, Jim</creator><creator>Furber, Steve</creator><creator>Mayr, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6524-3367</orcidid><orcidid>https://orcid.org/0000-0002-4267-7015</orcidid><orcidid>https://orcid.org/0000-0002-6286-5064</orcidid><orcidid>https://orcid.org/0000-0001-6012-8012</orcidid><orcidid>https://orcid.org/0000-0001-9042-5405</orcidid><orcidid>https://orcid.org/0000-0002-9938-2736</orcidid><orcidid>https://orcid.org/0000-0002-6113-3929</orcidid><orcidid>https://orcid.org/0000-0001-5227-6533</orcidid><orcidid>https://orcid.org/0000-0001-8812-4742</orcidid></search><sort><creationdate>20190801</creationdate><title>Dynamic Power Management for Neuromorphic Many-Core Systems</title><author>Hoppner, Sebastian ; Vogginger, Bernhard ; Yan, Yexin ; Dixius, Andreas ; Scholze, Stefan ; Partzsch, Johannes ; Neumarker, Felix ; Hartmann, Stephan ; Schiefer, Stefan ; Ellguth, Georg ; Cederstroem, Love ; Plana, Luis A. ; Garside, Jim ; Furber, Steve ; Mayr, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-73a0bc2139a91d75218cb85ad5fba1e2f1c87e42c0e0ad3a82148d1b25f6f0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Clocks</topic><topic>CMOS</topic><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>DVFS</topic><topic>Electric potential</topic><topic>MPSoC</topic><topic>neuromorphic computing</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Power system management</topic><topic>Product development</topic><topic>Real time operation</topic><topic>Reduction</topic><topic>Software</topic><topic>SpiNNaker2</topic><topic>Synapses</topic><topic>synfire chain</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoppner, Sebastian</creatorcontrib><creatorcontrib>Vogginger, Bernhard</creatorcontrib><creatorcontrib>Yan, Yexin</creatorcontrib><creatorcontrib>Dixius, Andreas</creatorcontrib><creatorcontrib>Scholze, Stefan</creatorcontrib><creatorcontrib>Partzsch, Johannes</creatorcontrib><creatorcontrib>Neumarker, Felix</creatorcontrib><creatorcontrib>Hartmann, Stephan</creatorcontrib><creatorcontrib>Schiefer, Stefan</creatorcontrib><creatorcontrib>Ellguth, Georg</creatorcontrib><creatorcontrib>Cederstroem, Love</creatorcontrib><creatorcontrib>Plana, Luis A.</creatorcontrib><creatorcontrib>Garside, Jim</creatorcontrib><creatorcontrib>Furber, Steve</creatorcontrib><creatorcontrib>Mayr, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoppner, Sebastian</au><au>Vogginger, Bernhard</au><au>Yan, Yexin</au><au>Dixius, Andreas</au><au>Scholze, Stefan</au><au>Partzsch, Johannes</au><au>Neumarker, Felix</au><au>Hartmann, Stephan</au><au>Schiefer, Stefan</au><au>Ellguth, Georg</au><au>Cederstroem, Love</au><au>Plana, Luis A.</au><au>Garside, Jim</au><au>Furber, Steve</au><au>Mayr, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Power Management for Neuromorphic Many-Core Systems</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>66</volume><issue>8</issue><spage>2973</spage><epage>2986</epage><pages>2973-2986</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a dynamic power management architecture for neuromorphic many-core systems, such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PEs) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28-nm SLP CMOS technology has been implemented. It includes four PEs which can be scaled from 0.7 to 1.0 V with frequencies from 125 to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks, it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second-generation SpiNNaker neuromorphic many-core system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2911898</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6524-3367</orcidid><orcidid>https://orcid.org/0000-0002-4267-7015</orcidid><orcidid>https://orcid.org/0000-0002-6286-5064</orcidid><orcidid>https://orcid.org/0000-0001-6012-8012</orcidid><orcidid>https://orcid.org/0000-0001-9042-5405</orcidid><orcidid>https://orcid.org/0000-0002-9938-2736</orcidid><orcidid>https://orcid.org/0000-0002-6113-3929</orcidid><orcidid>https://orcid.org/0000-0001-5227-6533</orcidid><orcidid>https://orcid.org/0000-0001-8812-4742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2019-08, Vol.66 (8), p.2973-2986
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2253468526
source IEEE Electronic Library (IEL)
subjects Architecture
Clocks
CMOS
Computer architecture
Computer simulation
DVFS
Electric potential
MPSoC
neuromorphic computing
Neuromorphics
Neurons
Power consumption
Power management
Power system management
Product development
Real time operation
Reduction
Software
SpiNNaker2
Synapses
synfire chain
Workload
title Dynamic Power Management for Neuromorphic Many-Core Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Power%20Management%20for%20Neuromorphic%20Many-Core%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Hoppner,%20Sebastian&rft.date=2019-08-01&rft.volume=66&rft.issue=8&rft.spage=2973&rft.epage=2986&rft.pages=2973-2986&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2911898&rft_dat=%3Cproquest_RIE%3E2253468526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253468526&rft_id=info:pmid/&rft_ieee_id=8701528&rfr_iscdi=true