Saturable Absorption in 2D Nanomaterials and Related Photonic Devices

Wide‐spectral saturable absorption (SA) has been experimentally demonstrated in two‐dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2019-07, Vol.13 (7), p.n/a
Hauptverfasser: Wang, Gaozhong, Baker‐Murray, Aidan A., Blau, Werner J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Laser & photonics reviews
container_volume 13
creator Wang, Gaozhong
Baker‐Murray, Aidan A.
Blau, Werner J.
description Wide‐spectral saturable absorption (SA) has been experimentally demonstrated in two‐dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable absorbers for mode‐locking or Q‐switching to generate laser pulses with short duration and high repetition rate. Here, the SA properties of graphene, layered transition metal dichalcogenides, Group‐V elements, and other 2D nanomaterials are reviewed by summarizing their slow‐ or fast‐ saturable absorption behavior using the modified Frantz–Nodvik model or the steady‐state solution of Hercher's rate equations. The dependence of SA in 2D nanomaterials on excitation wavelength, linear absorption coefficient, and pulse duration is also explained. Finally, the applications of these 2D nanomaterials in a range of pulsed lasers are summarized. Saturable absorption induced by Pauli‐blocking allows intense light to pass while low‐intensity light is absorbed. This can be utilized for mode‐locking to generate ultrashort laser pulses. Saturable absorption in a wide range of 2D nanomaterials and related photonic devices is reviewed, together with its applications in mode‐locked lasers, using slow‐ and fast‐saturable absorption models.
doi_str_mv 10.1002/lpor.201800282
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253178804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253178804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-6f9d559487e929138e61ad29de59474ad094dd1d86f54ead092831bc73b3b8f93</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMKVsyXOKX7kYR-rtjykilYFzpYTb4SrNA52Aurf46qoHNnL7qxmdrSD0C0lE0oIu2865yeMUBGBYGdoREXOEyGkPD_NglyiqxC2hGSx8hFavOp-8LpsAE_L4HzXW9di22I2xy-6dTvdg7e6CVi3Bm-gidjg9YfrXWsrPIcvW0G4Rhd15MDNbx-j94fF2-wpWa4en2fTZVJxWrAkr6XJMpmKAiSTlAvIqTZMGojLItWGyNQYakReZykcIBOcllXBS16KWvIxujve7bz7HCD0ausG30ZLxVgWPeKDaWRNjqzKuxA81Krzdqf9XlGiDlGpQ1TqFFUUyKPg2zaw_4etluvV5k_7A0XdbIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253178804</pqid></control><display><type>article</type><title>Saturable Absorption in 2D Nanomaterials and Related Photonic Devices</title><source>Access via Wiley Online Library</source><creator>Wang, Gaozhong ; Baker‐Murray, Aidan A. ; Blau, Werner J.</creator><creatorcontrib>Wang, Gaozhong ; Baker‐Murray, Aidan A. ; Blau, Werner J.</creatorcontrib><description>Wide‐spectral saturable absorption (SA) has been experimentally demonstrated in two‐dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable absorbers for mode‐locking or Q‐switching to generate laser pulses with short duration and high repetition rate. Here, the SA properties of graphene, layered transition metal dichalcogenides, Group‐V elements, and other 2D nanomaterials are reviewed by summarizing their slow‐ or fast‐ saturable absorption behavior using the modified Frantz–Nodvik model or the steady‐state solution of Hercher's rate equations. The dependence of SA in 2D nanomaterials on excitation wavelength, linear absorption coefficient, and pulse duration is also explained. Finally, the applications of these 2D nanomaterials in a range of pulsed lasers are summarized. Saturable absorption induced by Pauli‐blocking allows intense light to pass while low‐intensity light is absorbed. This can be utilized for mode‐locking to generate ultrashort laser pulses. Saturable absorption in a wide range of 2D nanomaterials and related photonic devices is reviewed, together with its applications in mode‐locked lasers, using slow‐ and fast‐saturable absorption models.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201800282</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Absorptivity ; black phosphorus ; Dependence ; Graphene ; I‐scan ; Locking ; mode‐locking ; Nanomaterials ; nonlinear optics ; Photonics ; Pulse duration ; Pulsed lasers ; Recovery time ; saturable absorption ; Transition metal compounds ; transition metal dichalcogenides ; Z‐scan</subject><ispartof>Laser &amp; photonics reviews, 2019-07, Vol.13 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-6f9d559487e929138e61ad29de59474ad094dd1d86f54ead092831bc73b3b8f93</citedby><cites>FETCH-LOGICAL-c3172-6f9d559487e929138e61ad29de59474ad094dd1d86f54ead092831bc73b3b8f93</cites><orcidid>0000-0002-2747-8931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201800282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201800282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Gaozhong</creatorcontrib><creatorcontrib>Baker‐Murray, Aidan A.</creatorcontrib><creatorcontrib>Blau, Werner J.</creatorcontrib><title>Saturable Absorption in 2D Nanomaterials and Related Photonic Devices</title><title>Laser &amp; photonics reviews</title><description>Wide‐spectral saturable absorption (SA) has been experimentally demonstrated in two‐dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable absorbers for mode‐locking or Q‐switching to generate laser pulses with short duration and high repetition rate. Here, the SA properties of graphene, layered transition metal dichalcogenides, Group‐V elements, and other 2D nanomaterials are reviewed by summarizing their slow‐ or fast‐ saturable absorption behavior using the modified Frantz–Nodvik model or the steady‐state solution of Hercher's rate equations. The dependence of SA in 2D nanomaterials on excitation wavelength, linear absorption coefficient, and pulse duration is also explained. Finally, the applications of these 2D nanomaterials in a range of pulsed lasers are summarized. Saturable absorption induced by Pauli‐blocking allows intense light to pass while low‐intensity light is absorbed. This can be utilized for mode‐locking to generate ultrashort laser pulses. Saturable absorption in a wide range of 2D nanomaterials and related photonic devices is reviewed, together with its applications in mode‐locked lasers, using slow‐ and fast‐saturable absorption models.</description><subject>2D materials</subject><subject>Absorptivity</subject><subject>black phosphorus</subject><subject>Dependence</subject><subject>Graphene</subject><subject>I‐scan</subject><subject>Locking</subject><subject>mode‐locking</subject><subject>Nanomaterials</subject><subject>nonlinear optics</subject><subject>Photonics</subject><subject>Pulse duration</subject><subject>Pulsed lasers</subject><subject>Recovery time</subject><subject>saturable absorption</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><subject>Z‐scan</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMKVsyXOKX7kYR-rtjykilYFzpYTb4SrNA52Aurf46qoHNnL7qxmdrSD0C0lE0oIu2865yeMUBGBYGdoREXOEyGkPD_NglyiqxC2hGSx8hFavOp-8LpsAE_L4HzXW9di22I2xy-6dTvdg7e6CVi3Bm-gidjg9YfrXWsrPIcvW0G4Rhd15MDNbx-j94fF2-wpWa4en2fTZVJxWrAkr6XJMpmKAiSTlAvIqTZMGojLItWGyNQYakReZykcIBOcllXBS16KWvIxujve7bz7HCD0ausG30ZLxVgWPeKDaWRNjqzKuxA81Krzdqf9XlGiDlGpQ1TqFFUUyKPg2zaw_4etluvV5k_7A0XdbIg</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Wang, Gaozhong</creator><creator>Baker‐Murray, Aidan A.</creator><creator>Blau, Werner J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2747-8931</orcidid></search><sort><creationdate>201907</creationdate><title>Saturable Absorption in 2D Nanomaterials and Related Photonic Devices</title><author>Wang, Gaozhong ; Baker‐Murray, Aidan A. ; Blau, Werner J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-6f9d559487e929138e61ad29de59474ad094dd1d86f54ead092831bc73b3b8f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D materials</topic><topic>Absorptivity</topic><topic>black phosphorus</topic><topic>Dependence</topic><topic>Graphene</topic><topic>I‐scan</topic><topic>Locking</topic><topic>mode‐locking</topic><topic>Nanomaterials</topic><topic>nonlinear optics</topic><topic>Photonics</topic><topic>Pulse duration</topic><topic>Pulsed lasers</topic><topic>Recovery time</topic><topic>saturable absorption</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><topic>Z‐scan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gaozhong</creatorcontrib><creatorcontrib>Baker‐Murray, Aidan A.</creatorcontrib><creatorcontrib>Blau, Werner J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gaozhong</au><au>Baker‐Murray, Aidan A.</au><au>Blau, Werner J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saturable Absorption in 2D Nanomaterials and Related Photonic Devices</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2019-07</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Wide‐spectral saturable absorption (SA) has been experimentally demonstrated in two‐dimensional (2D) nanomaterials with outstanding performance, such as low saturation intensity, deep modulation depth, and fast recovery time of excited carriers. Hence, 2D nanomaterials can be utilized as saturable absorbers for mode‐locking or Q‐switching to generate laser pulses with short duration and high repetition rate. Here, the SA properties of graphene, layered transition metal dichalcogenides, Group‐V elements, and other 2D nanomaterials are reviewed by summarizing their slow‐ or fast‐ saturable absorption behavior using the modified Frantz–Nodvik model or the steady‐state solution of Hercher's rate equations. The dependence of SA in 2D nanomaterials on excitation wavelength, linear absorption coefficient, and pulse duration is also explained. Finally, the applications of these 2D nanomaterials in a range of pulsed lasers are summarized. Saturable absorption induced by Pauli‐blocking allows intense light to pass while low‐intensity light is absorbed. This can be utilized for mode‐locking to generate ultrashort laser pulses. Saturable absorption in a wide range of 2D nanomaterials and related photonic devices is reviewed, together with its applications in mode‐locked lasers, using slow‐ and fast‐saturable absorption models.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.201800282</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2747-8931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2019-07, Vol.13 (7), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2253178804
source Access via Wiley Online Library
subjects 2D materials
Absorptivity
black phosphorus
Dependence
Graphene
I‐scan
Locking
mode‐locking
Nanomaterials
nonlinear optics
Photonics
Pulse duration
Pulsed lasers
Recovery time
saturable absorption
Transition metal compounds
transition metal dichalcogenides
Z‐scan
title Saturable Absorption in 2D Nanomaterials and Related Photonic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saturable%20Absorption%20in%202D%20Nanomaterials%20and%20Related%20Photonic%20Devices&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Wang,%20Gaozhong&rft.date=2019-07&rft.volume=13&rft.issue=7&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201800282&rft_dat=%3Cproquest_cross%3E2253178804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253178804&rft_id=info:pmid/&rfr_iscdi=true