Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration
ABSTRACT This study aimed to produce biomembranes with controlled degradability for application in bone regeneration in order to stimulate biological reactions necessary to improve bone formation. Hydrogels were prepared by dissolving hydrolyzed collagen (HC) and iota‐carrageenan (ι‐Carr) in aqueous...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2019-10, Vol.136 (39), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 39 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 136 |
creator | Nogueira, Lucas F. B. Maniglia, Bianca C. Blácido, Delia R. T. Ramos, Ana P. |
description | ABSTRACT
This study aimed to produce biomembranes with controlled degradability for application in bone regeneration in order to stimulate biological reactions necessary to improve bone formation. Hydrogels were prepared by dissolving hydrolyzed collagen (HC) and iota‐carrageenan (ι‐Carr) in aqueous mixtures containing CaCl2 and H3PO4. A rise in pH by exposure to NH3(g) caused mineral precipitation into the hydrogel. Subsequently, the membranes were fabricated by solvent casting. Infrared spectroscopy and X‐ray diffraction attested hydroxyapatite formation. The crystallite size was close to 12 nm, which was smaller than the size reported for human bone apatite. The membranes induced bone‐like apatite precipitation in simulated body fluid. The carrageenan content modulated the membrane mechanical behavior. Membranes with controlled degradability were obtained by using higher amount of this polysaccharide. These membranes were able to release HC in physiological conditions. The surface properties were evaluated in terms of wettability and surface energy (γS) by means of contact angle (θc) measurements. Low θc (8.5–16.8) indicated that the hybrid membranes were hydrophilic, while higher γS values, around 70.6 mJ.m−2, could favor biomolecule incorporation into the surface. Our data set evidenced that these materials could potentially be used as a temporary guided tissue regeneration membrane with the possibility of inducing bone regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48004.
Calcium and phosphate ions can be entrapped into the interstices of polysaccharide/collagen membranes resulting in the controlled precipitation of biominerals. |
doi_str_mv | 10.1002/app.48004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2252261743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252261743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-9b542d92d17332fea04a5302a88425c47f49e91311a20b82941137b51c414c883</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIJMKj4A9WoqJwsi_HdhlFvCSkUEBtjTdj2CjZNWPzcIHEJyDxh_kSFkxLNTO6596RLmMnUoylEGoCTTM2uRBmh42kKLLETFW-y0ZRk0leFOk-O2jblRBSpmI6Yu8LegDv7Pbjy_kw7NyG9Roe0E9c6GD78WmBKN7owU8e-yWFtx4a6FyH_LGvyC35BjcVgceWAyGvXADbuRfkG-iQHKxbXgfiVfDICWMyUrQHf8T26iji8d88ZPcX53fzq-RmcXk9n90kVmtjkqJKjVoWaikzrVWNIAykWijIc6NSa7LaFFhILSUoUeWqMFLqrEqlNdLYPNeH7HTIbSg8PWPblavwTD6-LJVKlZrKzOhInQ2UpdC2hHXZkNsA9aUU5U-7ZWy3_G03spOBfXVr7P8Hy9nt7eD4BuxEfwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252261743</pqid></control><display><type>article</type><title>Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nogueira, Lucas F. B. ; Maniglia, Bianca C. ; Blácido, Delia R. T. ; Ramos, Ana P.</creator><creatorcontrib>Nogueira, Lucas F. B. ; Maniglia, Bianca C. ; Blácido, Delia R. T. ; Ramos, Ana P.</creatorcontrib><description>ABSTRACT
This study aimed to produce biomembranes with controlled degradability for application in bone regeneration in order to stimulate biological reactions necessary to improve bone formation. Hydrogels were prepared by dissolving hydrolyzed collagen (HC) and iota‐carrageenan (ι‐Carr) in aqueous mixtures containing CaCl2 and H3PO4. A rise in pH by exposure to NH3(g) caused mineral precipitation into the hydrogel. Subsequently, the membranes were fabricated by solvent casting. Infrared spectroscopy and X‐ray diffraction attested hydroxyapatite formation. The crystallite size was close to 12 nm, which was smaller than the size reported for human bone apatite. The membranes induced bone‐like apatite precipitation in simulated body fluid. The carrageenan content modulated the membrane mechanical behavior. Membranes with controlled degradability were obtained by using higher amount of this polysaccharide. These membranes were able to release HC in physiological conditions. The surface properties were evaluated in terms of wettability and surface energy (γS) by means of contact angle (θc) measurements. Low θc (8.5–16.8) indicated that the hybrid membranes were hydrophilic, while higher γS values, around 70.6 mJ.m−2, could favor biomolecule incorporation into the surface. Our data set evidenced that these materials could potentially be used as a temporary guided tissue regeneration membrane with the possibility of inducing bone regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48004.
Calcium and phosphate ions can be entrapped into the interstices of polysaccharide/collagen membranes resulting in the controlled precipitation of biominerals.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.48004</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ammonia ; Apatite ; bioactive membranes ; Biocompatibility ; Biomedical materials ; Biomolecules ; Body fluids ; Calcium chloride ; Carrageenan ; Collagen ; Contact angle ; Crystallites ; Hydrogels ; hydrolyzed collagen ; Hydroxyapatite ; In vitro methods and tests ; Materials science ; Mechanical properties ; Membranes ; Polymers ; Polysaccharides ; Regeneration (physiology) ; Surface energy ; Surface properties ; Surgical implants ; Tissue engineering ; Wettability ; X-ray diffraction</subject><ispartof>Journal of applied polymer science, 2019-10, Vol.136 (39), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-9b542d92d17332fea04a5302a88425c47f49e91311a20b82941137b51c414c883</citedby><cites>FETCH-LOGICAL-c3344-9b542d92d17332fea04a5302a88425c47f49e91311a20b82941137b51c414c883</cites><orcidid>0000-0001-6200-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.48004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.48004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nogueira, Lucas F. B.</creatorcontrib><creatorcontrib>Maniglia, Bianca C.</creatorcontrib><creatorcontrib>Blácido, Delia R. T.</creatorcontrib><creatorcontrib>Ramos, Ana P.</creatorcontrib><title>Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration</title><title>Journal of applied polymer science</title><description>ABSTRACT
This study aimed to produce biomembranes with controlled degradability for application in bone regeneration in order to stimulate biological reactions necessary to improve bone formation. Hydrogels were prepared by dissolving hydrolyzed collagen (HC) and iota‐carrageenan (ι‐Carr) in aqueous mixtures containing CaCl2 and H3PO4. A rise in pH by exposure to NH3(g) caused mineral precipitation into the hydrogel. Subsequently, the membranes were fabricated by solvent casting. Infrared spectroscopy and X‐ray diffraction attested hydroxyapatite formation. The crystallite size was close to 12 nm, which was smaller than the size reported for human bone apatite. The membranes induced bone‐like apatite precipitation in simulated body fluid. The carrageenan content modulated the membrane mechanical behavior. Membranes with controlled degradability were obtained by using higher amount of this polysaccharide. These membranes were able to release HC in physiological conditions. The surface properties were evaluated in terms of wettability and surface energy (γS) by means of contact angle (θc) measurements. Low θc (8.5–16.8) indicated that the hybrid membranes were hydrophilic, while higher γS values, around 70.6 mJ.m−2, could favor biomolecule incorporation into the surface. Our data set evidenced that these materials could potentially be used as a temporary guided tissue regeneration membrane with the possibility of inducing bone regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48004.
Calcium and phosphate ions can be entrapped into the interstices of polysaccharide/collagen membranes resulting in the controlled precipitation of biominerals.</description><subject>Ammonia</subject><subject>Apatite</subject><subject>bioactive membranes</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Body fluids</subject><subject>Calcium chloride</subject><subject>Carrageenan</subject><subject>Collagen</subject><subject>Contact angle</subject><subject>Crystallites</subject><subject>Hydrogels</subject><subject>hydrolyzed collagen</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Regeneration (physiology)</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Wettability</subject><subject>X-ray diffraction</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIJMKj4A9WoqJwsi_HdhlFvCSkUEBtjTdj2CjZNWPzcIHEJyDxh_kSFkxLNTO6596RLmMnUoylEGoCTTM2uRBmh42kKLLETFW-y0ZRk0leFOk-O2jblRBSpmI6Yu8LegDv7Pbjy_kw7NyG9Roe0E9c6GD78WmBKN7owU8e-yWFtx4a6FyH_LGvyC35BjcVgceWAyGvXADbuRfkG-iQHKxbXgfiVfDICWMyUrQHf8T26iji8d88ZPcX53fzq-RmcXk9n90kVmtjkqJKjVoWaikzrVWNIAykWijIc6NSa7LaFFhILSUoUeWqMFLqrEqlNdLYPNeH7HTIbSg8PWPblavwTD6-LJVKlZrKzOhInQ2UpdC2hHXZkNsA9aUU5U-7ZWy3_G03spOBfXVr7P8Hy9nt7eD4BuxEfwU</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Nogueira, Lucas F. B.</creator><creator>Maniglia, Bianca C.</creator><creator>Blácido, Delia R. T.</creator><creator>Ramos, Ana P.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6200-8989</orcidid></search><sort><creationdate>20191015</creationdate><title>Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration</title><author>Nogueira, Lucas F. B. ; Maniglia, Bianca C. ; Blácido, Delia R. T. ; Ramos, Ana P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-9b542d92d17332fea04a5302a88425c47f49e91311a20b82941137b51c414c883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Apatite</topic><topic>bioactive membranes</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Body fluids</topic><topic>Calcium chloride</topic><topic>Carrageenan</topic><topic>Collagen</topic><topic>Contact angle</topic><topic>Crystallites</topic><topic>Hydrogels</topic><topic>hydrolyzed collagen</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Regeneration (physiology)</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Wettability</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogueira, Lucas F. B.</creatorcontrib><creatorcontrib>Maniglia, Bianca C.</creatorcontrib><creatorcontrib>Blácido, Delia R. T.</creatorcontrib><creatorcontrib>Ramos, Ana P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogueira, Lucas F. B.</au><au>Maniglia, Bianca C.</au><au>Blácido, Delia R. T.</au><au>Ramos, Ana P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration</atitle><jtitle>Journal of applied polymer science</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>136</volume><issue>39</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT
This study aimed to produce biomembranes with controlled degradability for application in bone regeneration in order to stimulate biological reactions necessary to improve bone formation. Hydrogels were prepared by dissolving hydrolyzed collagen (HC) and iota‐carrageenan (ι‐Carr) in aqueous mixtures containing CaCl2 and H3PO4. A rise in pH by exposure to NH3(g) caused mineral precipitation into the hydrogel. Subsequently, the membranes were fabricated by solvent casting. Infrared spectroscopy and X‐ray diffraction attested hydroxyapatite formation. The crystallite size was close to 12 nm, which was smaller than the size reported for human bone apatite. The membranes induced bone‐like apatite precipitation in simulated body fluid. The carrageenan content modulated the membrane mechanical behavior. Membranes with controlled degradability were obtained by using higher amount of this polysaccharide. These membranes were able to release HC in physiological conditions. The surface properties were evaluated in terms of wettability and surface energy (γS) by means of contact angle (θc) measurements. Low θc (8.5–16.8) indicated that the hybrid membranes were hydrophilic, while higher γS values, around 70.6 mJ.m−2, could favor biomolecule incorporation into the surface. Our data set evidenced that these materials could potentially be used as a temporary guided tissue regeneration membrane with the possibility of inducing bone regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48004.
Calcium and phosphate ions can be entrapped into the interstices of polysaccharide/collagen membranes resulting in the controlled precipitation of biominerals.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.48004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6200-8989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2019-10, Vol.136 (39), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2252261743 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia Apatite bioactive membranes Biocompatibility Biomedical materials Biomolecules Body fluids Calcium chloride Carrageenan Collagen Contact angle Crystallites Hydrogels hydrolyzed collagen Hydroxyapatite In vitro methods and tests Materials science Mechanical properties Membranes Polymers Polysaccharides Regeneration (physiology) Surface energy Surface properties Surgical implants Tissue engineering Wettability X-ray diffraction |
title | Organic–inorganic collagen/iota‐carrageenan/hydroxyapatite hybrid membranes are bioactive materials for bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%E2%80%93inorganic%20collagen/iota%E2%80%90carrageenan/hydroxyapatite%20hybrid%20membranes%20are%20bioactive%20materials%20for%20bone%20regeneration&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Nogueira,%20Lucas%20F.%20B.&rft.date=2019-10-15&rft.volume=136&rft.issue=39&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.48004&rft_dat=%3Cproquest_cross%3E2252261743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252261743&rft_id=info:pmid/&rfr_iscdi=true |