Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)

BACKGROUND Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2019-08, Vol.75 (8), p.2166-2173
Hauptverfasser: Wei, Peng, Chen, Ming, Nan, Can, Feng, Kaiyang, Shen, Guangmao, Cheng, Jiqiang, He, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2173
container_issue 8
container_start_page 2166
container_title Pest management science
container_volume 75
creator Wei, Peng
Chen, Ming
Nan, Can
Feng, Kaiyang
Shen, Guangmao
Cheng, Jiqiang
He, Lin
description BACKGROUND Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and acaricides need hydrolytic activation in vivo. Previously, expression analysis of a laboratory‐selected cyflumetofen‐resistant strain of Tetranychus cinnabarinus indicated that resistance was associated with increased expression of a CCE gene of TcCCE04, but also the downregulation of two CCE genes, TcCCE12 and TcCCE23. RESULTS Synergism experiments revealed the importance of ester hydrolysis in cyflumetofen toxicity, because treatment with S,S,S‐tributylphosphorotrithioate (DEF) caused strong inhibition of cyflumetofen hydrolysis, in both the susceptible and resistant strains. Moreover, silencing expression of TcCCE12 and TcCCE23 via RNAi further decreased the susceptibility of mites to cyflumetofen significantly, suggesting that downregulated CCE genes could be involved in cyflumetofen resistance. In addition, it was shown that recombinant TcCCE12 protein could hydrolyze cyflumetofen effectively. CONCLUSION Decreased esterase activity via downregulation of specific CCE genes most likely contributes to cyflumetofen resistance by decreased activation of cyflumetofen to its active metabolite. Mixtures of cyflumetofen and esterase‐inhibition acaricides (e.g. organophosphates or carbamates) should be avoided in field applications. © 2019 Society of Chemical Industry Cyflumetofen‐resistance is mediated by downregulated TcCCE genes, which reduce detoxification enzymes, decreasing the activation of prototype cyflumetofen in the evolution of resistant mites.
doi_str_mv 10.1002/ps.5339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2252079533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252079533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-5eb30acfc018c30e43fec9806b351220d82936139767557fa615dd68d8ae02cc3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7xH0jABxXZzMfSNY86P2Gg4ATfSpreakaXdEnr7L-3c3NvPuUGDudyD0LHlAwoIeyqDAPBudxBXSpY1B9KGe9u5_i9gw5CmBFCpJRsH3U4iQSPKe2ixa1bWg8fdaEq4yx2OdbKp-67KSBU4FUArJ2tvEnrCgKuHNZNXtRzqFwOFnsIJlTKasDG4ilUXtlGf9YBa2OtSpU3tv2c3zgTsvpLFReHaC9XRYCjzdtDb_d30_Fjf_L88DS-nvT1kFLZF5ByonSuCY01JzDkOWgZkyjlgjJGsphJHlEuR9FIiFGuIiqyLIqzWAFhWvMeOl17S-8WdXtMMnO1t-3KhDHByEi2xVrqbE1p70LwkCelN3Plm4SSZJU2KUOyStuSJxtfnc4h23J_LVvgcg0sTQHNf57k5fVX9wNF1IOT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252079533</pqid></control><display><type>article</type><title>Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)</title><source>Wiley Journals</source><creator>Wei, Peng ; Chen, Ming ; Nan, Can ; Feng, Kaiyang ; Shen, Guangmao ; Cheng, Jiqiang ; He, Lin</creator><creatorcontrib>Wei, Peng ; Chen, Ming ; Nan, Can ; Feng, Kaiyang ; Shen, Guangmao ; Cheng, Jiqiang ; He, Lin</creatorcontrib><description>BACKGROUND Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and acaricides need hydrolytic activation in vivo. Previously, expression analysis of a laboratory‐selected cyflumetofen‐resistant strain of Tetranychus cinnabarinus indicated that resistance was associated with increased expression of a CCE gene of TcCCE04, but also the downregulation of two CCE genes, TcCCE12 and TcCCE23. RESULTS Synergism experiments revealed the importance of ester hydrolysis in cyflumetofen toxicity, because treatment with S,S,S‐tributylphosphorotrithioate (DEF) caused strong inhibition of cyflumetofen hydrolysis, in both the susceptible and resistant strains. Moreover, silencing expression of TcCCE12 and TcCCE23 via RNAi further decreased the susceptibility of mites to cyflumetofen significantly, suggesting that downregulated CCE genes could be involved in cyflumetofen resistance. In addition, it was shown that recombinant TcCCE12 protein could hydrolyze cyflumetofen effectively. CONCLUSION Decreased esterase activity via downregulation of specific CCE genes most likely contributes to cyflumetofen resistance by decreased activation of cyflumetofen to its active metabolite. Mixtures of cyflumetofen and esterase‐inhibition acaricides (e.g. organophosphates or carbamates) should be avoided in field applications. © 2019 Society of Chemical Industry Cyflumetofen‐resistance is mediated by downregulated TcCCE genes, which reduce detoxification enzymes, decreasing the activation of prototype cyflumetofen in the evolution of resistant mites.</description><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1526-4998</identifier><identifier>DOI: 10.1002/ps.5339</identifier><identifier>PMID: 30653811</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Acaricides ; Biocompatibility ; Carbamate pesticides ; Carbamates (tradename) ; Carboxylesterase ; cyflumetofen resistance ; downregulation ; Esterase ; Gene expression ; Genes ; Hydrolysis ; Inhibition ; Insecticide resistance ; Insecticides ; Mutation ; Organic chemistry ; Organophosphates ; RNA-mediated interference ; RNAi ; Synergism ; Tetranychus ; Tetranychus cinnabarinus ; Toxicity</subject><ispartof>Pest management science, 2019-08, Vol.75 (8), p.2166-2173</ispartof><rights>2019 Society of Chemical Industry</rights><rights>2019 Society of Chemical Industry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-5eb30acfc018c30e43fec9806b351220d82936139767557fa615dd68d8ae02cc3</citedby><cites>FETCH-LOGICAL-c4119-5eb30acfc018c30e43fec9806b351220d82936139767557fa615dd68d8ae02cc3</cites><orcidid>0000-0002-5491-5375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.5339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.5339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30653811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Nan, Can</creatorcontrib><creatorcontrib>Feng, Kaiyang</creatorcontrib><creatorcontrib>Shen, Guangmao</creatorcontrib><creatorcontrib>Cheng, Jiqiang</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><title>Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)</title><title>Pest management science</title><addtitle>Pest Manag Sci</addtitle><description>BACKGROUND Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and acaricides need hydrolytic activation in vivo. Previously, expression analysis of a laboratory‐selected cyflumetofen‐resistant strain of Tetranychus cinnabarinus indicated that resistance was associated with increased expression of a CCE gene of TcCCE04, but also the downregulation of two CCE genes, TcCCE12 and TcCCE23. RESULTS Synergism experiments revealed the importance of ester hydrolysis in cyflumetofen toxicity, because treatment with S,S,S‐tributylphosphorotrithioate (DEF) caused strong inhibition of cyflumetofen hydrolysis, in both the susceptible and resistant strains. Moreover, silencing expression of TcCCE12 and TcCCE23 via RNAi further decreased the susceptibility of mites to cyflumetofen significantly, suggesting that downregulated CCE genes could be involved in cyflumetofen resistance. In addition, it was shown that recombinant TcCCE12 protein could hydrolyze cyflumetofen effectively. CONCLUSION Decreased esterase activity via downregulation of specific CCE genes most likely contributes to cyflumetofen resistance by decreased activation of cyflumetofen to its active metabolite. Mixtures of cyflumetofen and esterase‐inhibition acaricides (e.g. organophosphates or carbamates) should be avoided in field applications. © 2019 Society of Chemical Industry Cyflumetofen‐resistance is mediated by downregulated TcCCE genes, which reduce detoxification enzymes, decreasing the activation of prototype cyflumetofen in the evolution of resistant mites.</description><subject>Acaricides</subject><subject>Biocompatibility</subject><subject>Carbamate pesticides</subject><subject>Carbamates (tradename)</subject><subject>Carboxylesterase</subject><subject>cyflumetofen resistance</subject><subject>downregulation</subject><subject>Esterase</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hydrolysis</subject><subject>Inhibition</subject><subject>Insecticide resistance</subject><subject>Insecticides</subject><subject>Mutation</subject><subject>Organic chemistry</subject><subject>Organophosphates</subject><subject>RNA-mediated interference</subject><subject>RNAi</subject><subject>Synergism</subject><subject>Tetranychus</subject><subject>Tetranychus cinnabarinus</subject><subject>Toxicity</subject><issn>1526-498X</issn><issn>1526-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUQIMobk7xH0jABxXZzMfSNY86P2Gg4ATfSpreakaXdEnr7L-3c3NvPuUGDudyD0LHlAwoIeyqDAPBudxBXSpY1B9KGe9u5_i9gw5CmBFCpJRsH3U4iQSPKe2ixa1bWg8fdaEq4yx2OdbKp-67KSBU4FUArJ2tvEnrCgKuHNZNXtRzqFwOFnsIJlTKasDG4ilUXtlGf9YBa2OtSpU3tv2c3zgTsvpLFReHaC9XRYCjzdtDb_d30_Fjf_L88DS-nvT1kFLZF5ByonSuCY01JzDkOWgZkyjlgjJGsphJHlEuR9FIiFGuIiqyLIqzWAFhWvMeOl17S-8WdXtMMnO1t-3KhDHByEi2xVrqbE1p70LwkCelN3Plm4SSZJU2KUOyStuSJxtfnc4h23J_LVvgcg0sTQHNf57k5fVX9wNF1IOT</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Wei, Peng</creator><creator>Chen, Ming</creator><creator>Nan, Can</creator><creator>Feng, Kaiyang</creator><creator>Shen, Guangmao</creator><creator>Cheng, Jiqiang</creator><creator>He, Lin</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid></search><sort><creationdate>201908</creationdate><title>Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)</title><author>Wei, Peng ; Chen, Ming ; Nan, Can ; Feng, Kaiyang ; Shen, Guangmao ; Cheng, Jiqiang ; He, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-5eb30acfc018c30e43fec9806b351220d82936139767557fa615dd68d8ae02cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acaricides</topic><topic>Biocompatibility</topic><topic>Carbamate pesticides</topic><topic>Carbamates (tradename)</topic><topic>Carboxylesterase</topic><topic>cyflumetofen resistance</topic><topic>downregulation</topic><topic>Esterase</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hydrolysis</topic><topic>Inhibition</topic><topic>Insecticide resistance</topic><topic>Insecticides</topic><topic>Mutation</topic><topic>Organic chemistry</topic><topic>Organophosphates</topic><topic>RNA-mediated interference</topic><topic>RNAi</topic><topic>Synergism</topic><topic>Tetranychus</topic><topic>Tetranychus cinnabarinus</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Peng</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Nan, Can</creatorcontrib><creatorcontrib>Feng, Kaiyang</creatorcontrib><creatorcontrib>Shen, Guangmao</creatorcontrib><creatorcontrib>Cheng, Jiqiang</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Pest management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Peng</au><au>Chen, Ming</au><au>Nan, Can</au><au>Feng, Kaiyang</au><au>Shen, Guangmao</au><au>Cheng, Jiqiang</au><au>He, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)</atitle><jtitle>Pest management science</jtitle><addtitle>Pest Manag Sci</addtitle><date>2019-08</date><risdate>2019</risdate><volume>75</volume><issue>8</issue><spage>2166</spage><epage>2173</epage><pages>2166-2173</pages><issn>1526-498X</issn><eissn>1526-4998</eissn><abstract>BACKGROUND Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and acaricides need hydrolytic activation in vivo. Previously, expression analysis of a laboratory‐selected cyflumetofen‐resistant strain of Tetranychus cinnabarinus indicated that resistance was associated with increased expression of a CCE gene of TcCCE04, but also the downregulation of two CCE genes, TcCCE12 and TcCCE23. RESULTS Synergism experiments revealed the importance of ester hydrolysis in cyflumetofen toxicity, because treatment with S,S,S‐tributylphosphorotrithioate (DEF) caused strong inhibition of cyflumetofen hydrolysis, in both the susceptible and resistant strains. Moreover, silencing expression of TcCCE12 and TcCCE23 via RNAi further decreased the susceptibility of mites to cyflumetofen significantly, suggesting that downregulated CCE genes could be involved in cyflumetofen resistance. In addition, it was shown that recombinant TcCCE12 protein could hydrolyze cyflumetofen effectively. CONCLUSION Decreased esterase activity via downregulation of specific CCE genes most likely contributes to cyflumetofen resistance by decreased activation of cyflumetofen to its active metabolite. Mixtures of cyflumetofen and esterase‐inhibition acaricides (e.g. organophosphates or carbamates) should be avoided in field applications. © 2019 Society of Chemical Industry Cyflumetofen‐resistance is mediated by downregulated TcCCE genes, which reduce detoxification enzymes, decreasing the activation of prototype cyflumetofen in the evolution of resistant mites.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>30653811</pmid><doi>10.1002/ps.5339</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5491-5375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1526-498X
ispartof Pest management science, 2019-08, Vol.75 (8), p.2166-2173
issn 1526-498X
1526-4998
language eng
recordid cdi_proquest_journals_2252079533
source Wiley Journals
subjects Acaricides
Biocompatibility
Carbamate pesticides
Carbamates (tradename)
Carboxylesterase
cyflumetofen resistance
downregulation
Esterase
Gene expression
Genes
Hydrolysis
Inhibition
Insecticide resistance
Insecticides
Mutation
Organic chemistry
Organophosphates
RNA-mediated interference
RNAi
Synergism
Tetranychus
Tetranychus cinnabarinus
Toxicity
title Downregulation of carboxylesterase contributes to cyflumetofen resistance in Tetranychus cinnabarinus (Boisduval)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20carboxylesterase%20contributes%20to%20cyflumetofen%20resistance%20in%20Tetranychus%20cinnabarinus%20(Boisduval)&rft.jtitle=Pest%20management%20science&rft.au=Wei,%20Peng&rft.date=2019-08&rft.volume=75&rft.issue=8&rft.spage=2166&rft.epage=2173&rft.pages=2166-2173&rft.issn=1526-498X&rft.eissn=1526-4998&rft_id=info:doi/10.1002/ps.5339&rft_dat=%3Cproquest_cross%3E2252079533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252079533&rft_id=info:pmid/30653811&rfr_iscdi=true