Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures
Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at differen...
Gespeichert in:
Veröffentlicht in: | Energy harvesting and systems 2018-07, Vol.5 (1), p.3-10 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Energy harvesting and systems |
container_volume | 5 |
creator | Chavez, Luis A. Zayas Jimenez, Fabian O. Wilburn, Bethany R. Delfin, Luis C. Kim, Hoejin Love, Norman Lin, Yirong |
description | Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m
°C
. Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range. |
doi_str_mv | 10.1515/ehs-2018-0002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251964484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251964484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</originalsourceid><addsrcrecordid>eNptkEtLw0AQgIMoWGqP3hc8R_eRzW68SahWKOihPS-bzWybkkfdTSrx17uhohcvM8PwzYMvim4Jviec8AfY-5hiImOMMb2IZpTRLJYiTS9_a5FcRwvvD4EglHNB5Cwq8r122vTgqi_dV12LOos2e3CNrtGyBbcb0Uq7E_i-ando66f4ProOajC9qwzKwemmMh7pHi1rOOkeSrSB5hj6_eDA30RXVtceFj95Hm2fl5t8Fa_fXl7zp3VsqMAsliB4ho3MUsGNToUAVmhhE4lFJhljJDWAcYIFKwtbYoszyQub4ECBtSDZPLo77z267mMID6tDN7g2nFSUcpKlSSKTQMVnyrjOewdWHV3VaDcqgtVkUgWTajKpJpOBfzzzn7oOlkrYuWEMxd_yf-c4UZSxb1RLel4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964484</pqid></control><display><type>article</type><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><source>Walter De Gruyter: Open Access Journals</source><creator>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</creator><creatorcontrib>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</creatorcontrib><description>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m
°C
. Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</description><identifier>ISSN: 2329-8774</identifier><identifier>EISSN: 2329-8766</identifier><identifier>DOI: 10.1515/ehs-2018-0002</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Ceramics ; Cycles ; Domains ; Energy conversion ; Energy conversion efficiency ; Energy harvesting ; energy harvesting at elevated temperatures ; harvester load optimization ; High temperature ; Lithium ; Lithium niobates ; Piezoelectric ceramics ; Piezoelectricity ; pyroelectric characterization ; Temperature ; Thermal energy ; thermal energy harvesting ; Thermodynamic properties</subject><ispartof>Energy harvesting and systems, 2018-07, Vol.5 (1), p.3-10</ispartof><rights>2018 Walter de Gruyter Inc., Boston/Berlin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</citedby><cites>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2018-0002/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2018-0002/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Chavez, Luis A.</creatorcontrib><creatorcontrib>Zayas Jimenez, Fabian O.</creatorcontrib><creatorcontrib>Wilburn, Bethany R.</creatorcontrib><creatorcontrib>Delfin, Luis C.</creatorcontrib><creatorcontrib>Kim, Hoejin</creatorcontrib><creatorcontrib>Love, Norman</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><title>Energy harvesting and systems</title><description>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m
°C
. Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</description><subject>Ceramics</subject><subject>Cycles</subject><subject>Domains</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>energy harvesting at elevated temperatures</subject><subject>harvester load optimization</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>pyroelectric characterization</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>thermal energy harvesting</subject><subject>Thermodynamic properties</subject><issn>2329-8774</issn><issn>2329-8766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLw0AQgIMoWGqP3hc8R_eRzW68SahWKOihPS-bzWybkkfdTSrx17uhohcvM8PwzYMvim4Jviec8AfY-5hiImOMMb2IZpTRLJYiTS9_a5FcRwvvD4EglHNB5Cwq8r122vTgqi_dV12LOos2e3CNrtGyBbcb0Uq7E_i-ando66f4ProOajC9qwzKwemmMh7pHi1rOOkeSrSB5hj6_eDA30RXVtceFj95Hm2fl5t8Fa_fXl7zp3VsqMAsliB4ho3MUsGNToUAVmhhE4lFJhljJDWAcYIFKwtbYoszyQub4ECBtSDZPLo77z267mMID6tDN7g2nFSUcpKlSSKTQMVnyrjOewdWHV3VaDcqgtVkUgWTajKpJpOBfzzzn7oOlkrYuWEMxd_yf-c4UZSxb1RLel4</recordid><startdate>20180726</startdate><enddate>20180726</enddate><creator>Chavez, Luis A.</creator><creator>Zayas Jimenez, Fabian O.</creator><creator>Wilburn, Bethany R.</creator><creator>Delfin, Luis C.</creator><creator>Kim, Hoejin</creator><creator>Love, Norman</creator><creator>Lin, Yirong</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180726</creationdate><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><author>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ceramics</topic><topic>Cycles</topic><topic>Domains</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>energy harvesting at elevated temperatures</topic><topic>harvester load optimization</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>pyroelectric characterization</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>thermal energy harvesting</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Luis A.</creatorcontrib><creatorcontrib>Zayas Jimenez, Fabian O.</creatorcontrib><creatorcontrib>Wilburn, Bethany R.</creatorcontrib><creatorcontrib>Delfin, Luis C.</creatorcontrib><creatorcontrib>Kim, Hoejin</creatorcontrib><creatorcontrib>Love, Norman</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Energy harvesting and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Luis A.</au><au>Zayas Jimenez, Fabian O.</au><au>Wilburn, Bethany R.</au><au>Delfin, Luis C.</au><au>Kim, Hoejin</au><au>Love, Norman</au><au>Lin, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</atitle><jtitle>Energy harvesting and systems</jtitle><date>2018-07-26</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>2329-8774</issn><eissn>2329-8766</eissn><abstract>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m
°C
. Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/ehs-2018-0002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-8774 |
ispartof | Energy harvesting and systems, 2018-07, Vol.5 (1), p.3-10 |
issn | 2329-8774 2329-8766 |
language | eng |
recordid | cdi_proquest_journals_2251964484 |
source | Walter De Gruyter: Open Access Journals |
subjects | Ceramics Cycles Domains Energy conversion Energy conversion efficiency Energy harvesting energy harvesting at elevated temperatures harvester load optimization High temperature Lithium Lithium niobates Piezoelectric ceramics Piezoelectricity pyroelectric characterization Temperature Thermal energy thermal energy harvesting Thermodynamic properties |
title | Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Thermal%20Energy%20Harvesting%20Using%20Pyroelectric%20Ceramics%20at%20Elevated%20Temperatures&rft.jtitle=Energy%20harvesting%20and%20systems&rft.au=Chavez,%20Luis%20A.&rft.date=2018-07-26&rft.volume=5&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=2329-8774&rft.eissn=2329-8766&rft_id=info:doi/10.1515/ehs-2018-0002&rft_dat=%3Cproquest_cross%3E2251964484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251964484&rft_id=info:pmid/&rfr_iscdi=true |