Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures

Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy harvesting and systems 2018-07, Vol.5 (1), p.3-10
Hauptverfasser: Chavez, Luis A., Zayas Jimenez, Fabian O., Wilburn, Bethany R., Delfin, Luis C., Kim, Hoejin, Love, Norman, Lin, Yirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 3
container_title Energy harvesting and systems
container_volume 5
creator Chavez, Luis A.
Zayas Jimenez, Fabian O.
Wilburn, Bethany R.
Delfin, Luis C.
Kim, Hoejin
Love, Norman
Lin, Yirong
description Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m  °C . Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.
doi_str_mv 10.1515/ehs-2018-0002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251964484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251964484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</originalsourceid><addsrcrecordid>eNptkEtLw0AQgIMoWGqP3hc8R_eRzW68SahWKOihPS-bzWybkkfdTSrx17uhohcvM8PwzYMvim4Jviec8AfY-5hiImOMMb2IZpTRLJYiTS9_a5FcRwvvD4EglHNB5Cwq8r122vTgqi_dV12LOos2e3CNrtGyBbcb0Uq7E_i-ando66f4ProOajC9qwzKwemmMh7pHi1rOOkeSrSB5hj6_eDA30RXVtceFj95Hm2fl5t8Fa_fXl7zp3VsqMAsliB4ho3MUsGNToUAVmhhE4lFJhljJDWAcYIFKwtbYoszyQub4ECBtSDZPLo77z267mMID6tDN7g2nFSUcpKlSSKTQMVnyrjOewdWHV3VaDcqgtVkUgWTajKpJpOBfzzzn7oOlkrYuWEMxd_yf-c4UZSxb1RLel4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964484</pqid></control><display><type>article</type><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><source>Walter De Gruyter: Open Access Journals</source><creator>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</creator><creatorcontrib>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</creatorcontrib><description>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m  °C . Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</description><identifier>ISSN: 2329-8774</identifier><identifier>EISSN: 2329-8766</identifier><identifier>DOI: 10.1515/ehs-2018-0002</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Ceramics ; Cycles ; Domains ; Energy conversion ; Energy conversion efficiency ; Energy harvesting ; energy harvesting at elevated temperatures ; harvester load optimization ; High temperature ; Lithium ; Lithium niobates ; Piezoelectric ceramics ; Piezoelectricity ; pyroelectric characterization ; Temperature ; Thermal energy ; thermal energy harvesting ; Thermodynamic properties</subject><ispartof>Energy harvesting and systems, 2018-07, Vol.5 (1), p.3-10</ispartof><rights>2018 Walter de Gruyter Inc., Boston/Berlin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</citedby><cites>FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2018-0002/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2018-0002/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Chavez, Luis A.</creatorcontrib><creatorcontrib>Zayas Jimenez, Fabian O.</creatorcontrib><creatorcontrib>Wilburn, Bethany R.</creatorcontrib><creatorcontrib>Delfin, Luis C.</creatorcontrib><creatorcontrib>Kim, Hoejin</creatorcontrib><creatorcontrib>Love, Norman</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><title>Energy harvesting and systems</title><description>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m  °C . Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</description><subject>Ceramics</subject><subject>Cycles</subject><subject>Domains</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>energy harvesting at elevated temperatures</subject><subject>harvester load optimization</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>pyroelectric characterization</subject><subject>Temperature</subject><subject>Thermal energy</subject><subject>thermal energy harvesting</subject><subject>Thermodynamic properties</subject><issn>2329-8774</issn><issn>2329-8766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkEtLw0AQgIMoWGqP3hc8R_eRzW68SahWKOihPS-bzWybkkfdTSrx17uhohcvM8PwzYMvim4Jviec8AfY-5hiImOMMb2IZpTRLJYiTS9_a5FcRwvvD4EglHNB5Cwq8r122vTgqi_dV12LOos2e3CNrtGyBbcb0Uq7E_i-ando66f4ProOajC9qwzKwemmMh7pHi1rOOkeSrSB5hj6_eDA30RXVtceFj95Hm2fl5t8Fa_fXl7zp3VsqMAsliB4ho3MUsGNToUAVmhhE4lFJhljJDWAcYIFKwtbYoszyQub4ECBtSDZPLo77z267mMID6tDN7g2nFSUcpKlSSKTQMVnyrjOewdWHV3VaDcqgtVkUgWTajKpJpOBfzzzn7oOlkrYuWEMxd_yf-c4UZSxb1RLel4</recordid><startdate>20180726</startdate><enddate>20180726</enddate><creator>Chavez, Luis A.</creator><creator>Zayas Jimenez, Fabian O.</creator><creator>Wilburn, Bethany R.</creator><creator>Delfin, Luis C.</creator><creator>Kim, Hoejin</creator><creator>Love, Norman</creator><creator>Lin, Yirong</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180726</creationdate><title>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</title><author>Chavez, Luis A. ; Zayas Jimenez, Fabian O. ; Wilburn, Bethany R. ; Delfin, Luis C. ; Kim, Hoejin ; Love, Norman ; Lin, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2703-8e7590c89675ca677e3ba7f48079833316ce004073dbfd0f0985bf403baeffe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ceramics</topic><topic>Cycles</topic><topic>Domains</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>energy harvesting at elevated temperatures</topic><topic>harvester load optimization</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>pyroelectric characterization</topic><topic>Temperature</topic><topic>Thermal energy</topic><topic>thermal energy harvesting</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Luis A.</creatorcontrib><creatorcontrib>Zayas Jimenez, Fabian O.</creatorcontrib><creatorcontrib>Wilburn, Bethany R.</creatorcontrib><creatorcontrib>Delfin, Luis C.</creatorcontrib><creatorcontrib>Kim, Hoejin</creatorcontrib><creatorcontrib>Love, Norman</creatorcontrib><creatorcontrib>Lin, Yirong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Energy harvesting and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Luis A.</au><au>Zayas Jimenez, Fabian O.</au><au>Wilburn, Bethany R.</au><au>Delfin, Luis C.</au><au>Kim, Hoejin</au><au>Love, Norman</au><au>Lin, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures</atitle><jtitle>Energy harvesting and systems</jtitle><date>2018-07-26</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>2329-8774</issn><eissn>2329-8766</eissn><abstract>Energy harvesting has drawn increasing attention due to the fast development of wireless sensors and devices. Most research has been focused on mechanical energy harvesting using piezoelectric ceramics; however, little is known on their experimental capabilities to harvest thermal energy at different temperature ranges and the impact that the temperature range has on the energy conversion efficiency. Majority of piezoelectric ceramics are pyroelectric in nature thus enabling them to couple energy between thermal and electrical domains. This paper demonstrates the use of Lithium Niobate (LNB) as a thermal energy harvesting device for high temperature applications. A custom testing setup was developed to test the LNB sample temperatures up to 225 °C. Pyroelectric coefficient of the material was characterized at different temperature ranges. Pyroelectric coefficient was found to increase with temperature, with a maximum value of −196 μC·m  °C . Power output of the sample was also characterized in different temperature ranges. A maximum value of over 20.5 μW was found when cycling the sample between 75 °C and 100 °C. Meanwhile, a maximum value of 14.8 μW was found in the 125 °C to 150 °C range. Finally, a peak value of 255 nW was found when cycling the sample in the 200 °C to 225 °C range.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/ehs-2018-0002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-8774
ispartof Energy harvesting and systems, 2018-07, Vol.5 (1), p.3-10
issn 2329-8774
2329-8766
language eng
recordid cdi_proquest_journals_2251964484
source Walter De Gruyter: Open Access Journals
subjects Ceramics
Cycles
Domains
Energy conversion
Energy conversion efficiency
Energy harvesting
energy harvesting at elevated temperatures
harvester load optimization
High temperature
Lithium
Lithium niobates
Piezoelectric ceramics
Piezoelectricity
pyroelectric characterization
Temperature
Thermal energy
thermal energy harvesting
Thermodynamic properties
title Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Thermal%20Energy%20Harvesting%20Using%20Pyroelectric%20Ceramics%20at%20Elevated%20Temperatures&rft.jtitle=Energy%20harvesting%20and%20systems&rft.au=Chavez,%20Luis%20A.&rft.date=2018-07-26&rft.volume=5&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=2329-8774&rft.eissn=2329-8766&rft_id=info:doi/10.1515/ehs-2018-0002&rft_dat=%3Cproquest_cross%3E2251964484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251964484&rft_id=info:pmid/&rfr_iscdi=true