Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation

The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical organic chemistry 2019-08, Vol.32 (8), p.n/a
1. Verfasser: Cheng, Xueli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Journal of physical organic chemistry
container_volume 32
creator Cheng, Xueli
description The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol. The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.
doi_str_mv 10.1002/poc.3955
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251964360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251964360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtYq-BECXrxsnX1vvJXiC4R60HOYzaNN3U3W7Fa739609eppCPPLDPMn5DqGWQyQ3HVOzFKW5ydkEgNjURwep2QCFcuiNEnhnFz0_QYg9PJyQj4Xbts1xq4oWkmlEuhrtxsbHIyztFVijdb0LXWauh02DoUajKAojDz8UMN6bJRV0mBrrLqnczqslfN7hQ019lv1g1kdxl2SM41Nr67-6pR8PD68L56j1-XTy2L-GomEpXmkEiFFXsVM6iRlmawYhHuQQVZnGeiSqbIuCy3zYKBkoi5qFMC0wLLSBZbplNwc53befW3Dfr5xW2_DSp4kecyKLC0gqNujEt71vVead9606EceA99HyUOUfB9loNGR_phGjf86_rZcHPwvxu92rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964360</pqid></control><display><type>article</type><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><source>Access via Wiley Online Library</source><creator>Cheng, Xueli</creator><creatorcontrib>Cheng, Xueli</creatorcontrib><description>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol. The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</description><identifier>ISSN: 0894-3230</identifier><identifier>EISSN: 1099-1395</identifier><identifier>DOI: 10.1002/poc.3955</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carboxyl group ; Decarboxylation ; Dehydration ; Ethylenediamine ; Hydrogen bonds ; M06‐2X ; NH2CH2CH2NH3 ; Optimization ; oxaloacetate ; Protons ; Solvation</subject><ispartof>Journal of physical organic chemistry, 2019-08, Vol.32 (8), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</citedby><cites>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</cites><orcidid>0000-0002-1795-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpoc.3955$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpoc.3955$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheng, Xueli</creatorcontrib><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><title>Journal of physical organic chemistry</title><description>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol. The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</description><subject>Ammonia</subject><subject>Carboxyl group</subject><subject>Decarboxylation</subject><subject>Dehydration</subject><subject>Ethylenediamine</subject><subject>Hydrogen bonds</subject><subject>M06‐2X</subject><subject>NH2CH2CH2NH3</subject><subject>Optimization</subject><subject>oxaloacetate</subject><subject>Protons</subject><subject>Solvation</subject><issn>0894-3230</issn><issn>1099-1395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtYq-BECXrxsnX1vvJXiC4R60HOYzaNN3U3W7Fa739609eppCPPLDPMn5DqGWQyQ3HVOzFKW5ydkEgNjURwep2QCFcuiNEnhnFz0_QYg9PJyQj4Xbts1xq4oWkmlEuhrtxsbHIyztFVijdb0LXWauh02DoUajKAojDz8UMN6bJRV0mBrrLqnczqslfN7hQ019lv1g1kdxl2SM41Nr67-6pR8PD68L56j1-XTy2L-GomEpXmkEiFFXsVM6iRlmawYhHuQQVZnGeiSqbIuCy3zYKBkoi5qFMC0wLLSBZbplNwc53befW3Dfr5xW2_DSp4kecyKLC0gqNujEt71vVead9606EceA99HyUOUfB9loNGR_phGjf86_rZcHPwvxu92rw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Cheng, Xueli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1795-309X</orcidid></search><sort><creationdate>201908</creationdate><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><author>Cheng, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Carboxyl group</topic><topic>Decarboxylation</topic><topic>Dehydration</topic><topic>Ethylenediamine</topic><topic>Hydrogen bonds</topic><topic>M06‐2X</topic><topic>NH2CH2CH2NH3</topic><topic>Optimization</topic><topic>oxaloacetate</topic><topic>Protons</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xueli</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</atitle><jtitle>Journal of physical organic chemistry</jtitle><date>2019-08</date><risdate>2019</risdate><volume>32</volume><issue>8</issue><epage>n/a</epage><issn>0894-3230</issn><eissn>1099-1395</eissn><abstract>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol. The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/poc.3955</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1795-309X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-3230
ispartof Journal of physical organic chemistry, 2019-08, Vol.32 (8), p.n/a
issn 0894-3230
1099-1395
language eng
recordid cdi_proquest_journals_2251964360
source Access via Wiley Online Library
subjects Ammonia
Carboxyl group
Decarboxylation
Dehydration
Ethylenediamine
Hydrogen bonds
M06‐2X
NH2CH2CH2NH3
Optimization
oxaloacetate
Protons
Solvation
title Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20and%20decarboxylation%20mechanism%20of%20oxaloacetic%20acid%20and%20ethylenediamine:%20A%20theoretical%20investigation&rft.jtitle=Journal%20of%20physical%20organic%20chemistry&rft.au=Cheng,%20Xueli&rft.date=2019-08&rft.volume=32&rft.issue=8&rft.epage=n/a&rft.issn=0894-3230&rft.eissn=1099-1395&rft_id=info:doi/10.1002/poc.3955&rft_dat=%3Cproquest_cross%3E2251964360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251964360&rft_id=info:pmid/&rfr_iscdi=true