Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation
The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinola...
Gespeichert in:
Veröffentlicht in: | Journal of physical organic chemistry 2019-08, Vol.32 (8), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of physical organic chemistry |
container_volume | 32 |
creator | Cheng, Xueli |
description | The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol.
The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated. |
doi_str_mv | 10.1002/poc.3955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251964360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251964360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtYq-BECXrxsnX1vvJXiC4R60HOYzaNN3U3W7Fa739609eppCPPLDPMn5DqGWQyQ3HVOzFKW5ydkEgNjURwep2QCFcuiNEnhnFz0_QYg9PJyQj4Xbts1xq4oWkmlEuhrtxsbHIyztFVijdb0LXWauh02DoUajKAojDz8UMN6bJRV0mBrrLqnczqslfN7hQ019lv1g1kdxl2SM41Nr67-6pR8PD68L56j1-XTy2L-GomEpXmkEiFFXsVM6iRlmawYhHuQQVZnGeiSqbIuCy3zYKBkoi5qFMC0wLLSBZbplNwc53befW3Dfr5xW2_DSp4kecyKLC0gqNujEt71vVead9606EceA99HyUOUfB9loNGR_phGjf86_rZcHPwvxu92rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251964360</pqid></control><display><type>article</type><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><source>Access via Wiley Online Library</source><creator>Cheng, Xueli</creator><creatorcontrib>Cheng, Xueli</creatorcontrib><description>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol.
The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</description><identifier>ISSN: 0894-3230</identifier><identifier>EISSN: 1099-1395</identifier><identifier>DOI: 10.1002/poc.3955</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Carboxyl group ; Decarboxylation ; Dehydration ; Ethylenediamine ; Hydrogen bonds ; M06‐2X ; NH2CH2CH2NH3 ; Optimization ; oxaloacetate ; Protons ; Solvation</subject><ispartof>Journal of physical organic chemistry, 2019-08, Vol.32 (8), p.n/a</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</citedby><cites>FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</cites><orcidid>0000-0002-1795-309X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpoc.3955$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpoc.3955$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cheng, Xueli</creatorcontrib><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><title>Journal of physical organic chemistry</title><description>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol.
The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</description><subject>Ammonia</subject><subject>Carboxyl group</subject><subject>Decarboxylation</subject><subject>Dehydration</subject><subject>Ethylenediamine</subject><subject>Hydrogen bonds</subject><subject>M06‐2X</subject><subject>NH2CH2CH2NH3</subject><subject>Optimization</subject><subject>oxaloacetate</subject><subject>Protons</subject><subject>Solvation</subject><issn>0894-3230</issn><issn>1099-1395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtYq-BECXrxsnX1vvJXiC4R60HOYzaNN3U3W7Fa739609eppCPPLDPMn5DqGWQyQ3HVOzFKW5ydkEgNjURwep2QCFcuiNEnhnFz0_QYg9PJyQj4Xbts1xq4oWkmlEuhrtxsbHIyztFVijdb0LXWauh02DoUajKAojDz8UMN6bJRV0mBrrLqnczqslfN7hQ019lv1g1kdxl2SM41Nr67-6pR8PD68L56j1-XTy2L-GomEpXmkEiFFXsVM6iRlmawYhHuQQVZnGeiSqbIuCy3zYKBkoi5qFMC0wLLSBZbplNwc53befW3Dfr5xW2_DSp4kecyKLC0gqNujEt71vVead9606EceA99HyUOUfB9loNGR_phGjf86_rZcHPwvxu92rw</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Cheng, Xueli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1795-309X</orcidid></search><sort><creationdate>201908</creationdate><title>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</title><author>Cheng, Xueli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-e2cdc5819df2394d890955a904b440f79e7b76fd5581079cb6bac09fca78f6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ammonia</topic><topic>Carboxyl group</topic><topic>Decarboxylation</topic><topic>Dehydration</topic><topic>Ethylenediamine</topic><topic>Hydrogen bonds</topic><topic>M06‐2X</topic><topic>NH2CH2CH2NH3</topic><topic>Optimization</topic><topic>oxaloacetate</topic><topic>Protons</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Xueli</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Xueli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation</atitle><jtitle>Journal of physical organic chemistry</jtitle><date>2019-08</date><risdate>2019</risdate><volume>32</volume><issue>8</issue><epage>n/a</epage><issn>0894-3230</issn><eissn>1099-1395</eissn><abstract>The decarboxylation mechanism of deprotonated oxaloacetate at pH = 8.0 in aid of protonated ethylenediamine was investigated systematically by full optimization at M06‐2X/6‐311++G(d,p) level combined with the CPCM solvation model to consider the effect of bulk water, where the roles of the carbinolamine and imine intermediates were elucidated. In the minimum energy path, the NH3+ group binds to the β‐carboxyl group of oxaloacetate via a hydrogen bond, and the amino group as both a nucleophile and an electrophile connects to the CO group by a hydrogen transfer process with a free‐energy barrier of 131.9 kJ/mol. Then the carbinolamine intermediate is dehydrated to form an imine with a total barrier of 164.2 kJ/mol, which is the rate‐limiting step in this energetically most favorable channel. After a proton transfer process, the β‐decarboxylation barrier is only 49.6 kJ/mol.
The detailed coupling and dehydration‐decarboxylation mechanism of oxaloacetate and ethylenediamine, and the role and reactivity of key intermediates were elucidated.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/poc.3955</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1795-309X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3230 |
ispartof | Journal of physical organic chemistry, 2019-08, Vol.32 (8), p.n/a |
issn | 0894-3230 1099-1395 |
language | eng |
recordid | cdi_proquest_journals_2251964360 |
source | Access via Wiley Online Library |
subjects | Ammonia Carboxyl group Decarboxylation Dehydration Ethylenediamine Hydrogen bonds M06‐2X NH2CH2CH2NH3 Optimization oxaloacetate Protons Solvation |
title | Coupling and decarboxylation mechanism of oxaloacetic acid and ethylenediamine: A theoretical investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20and%20decarboxylation%20mechanism%20of%20oxaloacetic%20acid%20and%20ethylenediamine:%20A%20theoretical%20investigation&rft.jtitle=Journal%20of%20physical%20organic%20chemistry&rft.au=Cheng,%20Xueli&rft.date=2019-08&rft.volume=32&rft.issue=8&rft.epage=n/a&rft.issn=0894-3230&rft.eissn=1099-1395&rft_id=info:doi/10.1002/poc.3955&rft_dat=%3Cproquest_cross%3E2251964360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251964360&rft_id=info:pmid/&rfr_iscdi=true |