Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets
We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We hav...
Gespeichert in:
Veröffentlicht in: | Proceedings of the International Astronomical Union 2005-10, Vol.1 (C200), p.185-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | C200 |
container_start_page | 185 |
container_title | Proceedings of the International Astronomical Union |
container_volume | 1 |
creator | Richardson, L. Jeremy Seager, Sara Deming, Drake Harrington, Joseph Barry, Richard K. Rajagopal, Jayadev Danchi, William C. |
description | We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST). |
doi_str_mv | 10.1017/S174392130600929X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_225195170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S174392130600929X</cupid><sourcerecordid>1400558031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLfFe3T_ZZM9SqxtIWBBBW9hkt1tU9Kk7m6k_famtOhBPL1heL83zEPolpJ7Smjy8EoTwRWjnEhCFFMfZ2h0WEWKMXr-M1N-ia68XxMiZMrjEVrMW-vAGY3zerkKOOvdl_EYWo3DyuAnE0wVoKybOuxxZ3HWdN5E8xZPdsGB7xpweFpDG_CigdYEf40uLDTe3Jx0jN6fJ2_ZLMpfpvPsMY8qlohdJGUpElEpRixLUsUqAQClUhqsopKrVFqtlaEx0WlaDa8dNI4JBymYJJaP0d0xd-u6z974UKy73rXDyYKxmKqYJmQw0aOpcp33zthi6-oNuH1BSXHorfjT28DwEwOb0tV6aX6T_6e-Aaffbho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225195170</pqid></control><display><type>article</type><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><source>Cambridge Journals</source><creator>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</creator><creatorcontrib>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</creatorcontrib><description>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S174392130600929X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymmetry ; Atmosphere ; Contributed Papers ; Light ; Pluto ; Space telescopes</subject><ispartof>Proceedings of the International Astronomical Union, 2005-10, Vol.1 (C200), p.185-188</ispartof><rights>2006 International Astronomical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S174392130600929X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Richardson, L. Jeremy</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Deming, Drake</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Barry, Richard K.</creatorcontrib><creatorcontrib>Rajagopal, Jayadev</creatorcontrib><creatorcontrib>Danchi, William C.</creatorcontrib><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</description><subject>Asymmetry</subject><subject>Atmosphere</subject><subject>Contributed Papers</subject><subject>Light</subject><subject>Pluto</subject><subject>Space telescopes</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLfFe3T_ZZM9SqxtIWBBBW9hkt1tU9Kk7m6k_famtOhBPL1heL83zEPolpJ7Smjy8EoTwRWjnEhCFFMfZ2h0WEWKMXr-M1N-ia68XxMiZMrjEVrMW-vAGY3zerkKOOvdl_EYWo3DyuAnE0wVoKybOuxxZ3HWdN5E8xZPdsGB7xpweFpDG_CigdYEf40uLDTe3Jx0jN6fJ2_ZLMpfpvPsMY8qlohdJGUpElEpRixLUsUqAQClUhqsopKrVFqtlaEx0WlaDa8dNI4JBymYJJaP0d0xd-u6z974UKy73rXDyYKxmKqYJmQw0aOpcp33zthi6-oNuH1BSXHorfjT28DwEwOb0tV6aX6T_6e-Aaffbho</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Richardson, L. Jeremy</creator><creator>Seager, Sara</creator><creator>Deming, Drake</creator><creator>Harrington, Joseph</creator><creator>Barry, Richard K.</creator><creator>Rajagopal, Jayadev</creator><creator>Danchi, William C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20051001</creationdate><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><author>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asymmetry</topic><topic>Atmosphere</topic><topic>Contributed Papers</topic><topic>Light</topic><topic>Pluto</topic><topic>Space telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, L. Jeremy</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Deming, Drake</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Barry, Richard K.</creatorcontrib><creatorcontrib>Rajagopal, Jayadev</creatorcontrib><creatorcontrib>Danchi, William C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, L. Jeremy</au><au>Seager, Sara</au><au>Deming, Drake</au><au>Harrington, Joseph</au><au>Barry, Richard K.</au><au>Rajagopal, Jayadev</au><au>Danchi, William C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>1</volume><issue>C200</issue><spage>185</spage><epage>188</epage><pages>185-188</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S174392130600929X</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-9213 |
ispartof | Proceedings of the International Astronomical Union, 2005-10, Vol.1 (C200), p.185-188 |
issn | 1743-9213 1743-9221 |
language | eng |
recordid | cdi_proquest_journals_225195170 |
source | Cambridge Journals |
subjects | Asymmetry Atmosphere Contributed Papers Light Pluto Space telescopes |
title | Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Light%20Curves%20and%20the%20Detectability%20of%20Close-In%20Extrasolar%20Giant%20Planets&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Richardson,%20L.%20Jeremy&rft.date=2005-10-01&rft.volume=1&rft.issue=C200&rft.spage=185&rft.epage=188&rft.pages=185-188&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S174392130600929X&rft_dat=%3Cproquest_cross%3E1400558031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=225195170&rft_id=info:pmid/&rft_cupid=10_1017_S174392130600929X&rfr_iscdi=true |