Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets

We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Astronomical Union 2005-10, Vol.1 (C200), p.185-188
Hauptverfasser: Richardson, L. Jeremy, Seager, Sara, Deming, Drake, Harrington, Joseph, Barry, Richard K., Rajagopal, Jayadev, Danchi, William C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue C200
container_start_page 185
container_title Proceedings of the International Astronomical Union
container_volume 1
creator Richardson, L. Jeremy
Seager, Sara
Deming, Drake
Harrington, Joseph
Barry, Richard K.
Rajagopal, Jayadev
Danchi, William C.
description We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).
doi_str_mv 10.1017/S174392130600929X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_225195170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S174392130600929X</cupid><sourcerecordid>1400558031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLfFe3T_ZZM9SqxtIWBBBW9hkt1tU9Kk7m6k_famtOhBPL1heL83zEPolpJ7Smjy8EoTwRWjnEhCFFMfZ2h0WEWKMXr-M1N-ia68XxMiZMrjEVrMW-vAGY3zerkKOOvdl_EYWo3DyuAnE0wVoKybOuxxZ3HWdN5E8xZPdsGB7xpweFpDG_CigdYEf40uLDTe3Jx0jN6fJ2_ZLMpfpvPsMY8qlohdJGUpElEpRixLUsUqAQClUhqsopKrVFqtlaEx0WlaDa8dNI4JBymYJJaP0d0xd-u6z974UKy73rXDyYKxmKqYJmQw0aOpcp33zthi6-oNuH1BSXHorfjT28DwEwOb0tV6aX6T_6e-Aaffbho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225195170</pqid></control><display><type>article</type><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><source>Cambridge Journals</source><creator>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</creator><creatorcontrib>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</creatorcontrib><description>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S174392130600929X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymmetry ; Atmosphere ; Contributed Papers ; Light ; Pluto ; Space telescopes</subject><ispartof>Proceedings of the International Astronomical Union, 2005-10, Vol.1 (C200), p.185-188</ispartof><rights>2006 International Astronomical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S174392130600929X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Richardson, L. Jeremy</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Deming, Drake</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Barry, Richard K.</creatorcontrib><creatorcontrib>Rajagopal, Jayadev</creatorcontrib><creatorcontrib>Danchi, William C.</creatorcontrib><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</description><subject>Asymmetry</subject><subject>Atmosphere</subject><subject>Contributed Papers</subject><subject>Light</subject><subject>Pluto</subject><subject>Space telescopes</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLfFe3T_ZZM9SqxtIWBBBW9hkt1tU9Kk7m6k_famtOhBPL1heL83zEPolpJ7Smjy8EoTwRWjnEhCFFMfZ2h0WEWKMXr-M1N-ia68XxMiZMrjEVrMW-vAGY3zerkKOOvdl_EYWo3DyuAnE0wVoKybOuxxZ3HWdN5E8xZPdsGB7xpweFpDG_CigdYEf40uLDTe3Jx0jN6fJ2_ZLMpfpvPsMY8qlohdJGUpElEpRixLUsUqAQClUhqsopKrVFqtlaEx0WlaDa8dNI4JBymYJJaP0d0xd-u6z974UKy73rXDyYKxmKqYJmQw0aOpcp33zthi6-oNuH1BSXHorfjT28DwEwOb0tV6aX6T_6e-Aaffbho</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Richardson, L. Jeremy</creator><creator>Seager, Sara</creator><creator>Deming, Drake</creator><creator>Harrington, Joseph</creator><creator>Barry, Richard K.</creator><creator>Rajagopal, Jayadev</creator><creator>Danchi, William C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20051001</creationdate><title>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</title><author>Richardson, L. Jeremy ; Seager, Sara ; Deming, Drake ; Harrington, Joseph ; Barry, Richard K. ; Rajagopal, Jayadev ; Danchi, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274x-66b474c920f27892c4aaab99daf9163986fdd9e150d88c4390d885503a64260f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asymmetry</topic><topic>Atmosphere</topic><topic>Contributed Papers</topic><topic>Light</topic><topic>Pluto</topic><topic>Space telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, L. Jeremy</creatorcontrib><creatorcontrib>Seager, Sara</creatorcontrib><creatorcontrib>Deming, Drake</creatorcontrib><creatorcontrib>Harrington, Joseph</creatorcontrib><creatorcontrib>Barry, Richard K.</creatorcontrib><creatorcontrib>Rajagopal, Jayadev</creatorcontrib><creatorcontrib>Danchi, William C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, L. Jeremy</au><au>Seager, Sara</au><au>Deming, Drake</au><au>Harrington, Joseph</au><au>Barry, Richard K.</au><au>Rajagopal, Jayadev</au><au>Danchi, William C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>1</volume><issue>C200</issue><spage>185</spage><epage>188</epage><pages>185-188</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>We compute theoretical infrared light curves for several known extrasolar planets. We have constructed a set of routines to calculate the orbital parameters for a given planet and integrate over the planetary disk to determine the total flux density of the planet as it orbits the parent star. We have further developed a spectral synthesis routine to calculate theoretical spectra of extrasolar giant planets from 3–24 $\mu$m. The code requires a temperature-pressure profile as input, calculated by solving the radiative transfer equation; it then calculates continuous opacities and line opacities for water, carbon monoxide, and methane, and finally integrates over the layers of the atmosphere to determine the emergent flux. By integrating the theoretical spectrum over the bandpass of a particular instrument and including realistic instrument noise, we produce a set of multi-wavelength, infrared light curves. Using these light curves, we predict whether a particular known planet can be observed and characterized using the Spitzer Space Telescope, as well as other proposed space-based instruments, such as the Fourier-Kelvin Stellar Interferometer (FKSI) and the James Webb Space Telescope (JWST).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S174392130600929X</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1743-9213
ispartof Proceedings of the International Astronomical Union, 2005-10, Vol.1 (C200), p.185-188
issn 1743-9213
1743-9221
language eng
recordid cdi_proquest_journals_225195170
source Cambridge Journals
subjects Asymmetry
Atmosphere
Contributed Papers
Light
Pluto
Space telescopes
title Infrared Light Curves and the Detectability of Close-In Extrasolar Giant Planets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Light%20Curves%20and%20the%20Detectability%20of%20Close-In%20Extrasolar%20Giant%20Planets&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Richardson,%20L.%20Jeremy&rft.date=2005-10-01&rft.volume=1&rft.issue=C200&rft.spage=185&rft.epage=188&rft.pages=185-188&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S174392130600929X&rft_dat=%3Cproquest_cross%3E1400558031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=225195170&rft_id=info:pmid/&rft_cupid=10_1017_S174392130600929X&rfr_iscdi=true