Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation
Summary Conventional rectangular microstrip‐fed patch antennas are initially investigated numerically within the frequency band 2.0 to 2.8 GHz for Wi‐Fi applications. In order to enhance the input parameters of the underlying antennas, three prototypes are designed. A split is diagonally loaded on a...
Gespeichert in:
Veröffentlicht in: | International journal of circuit theory and applications 2019-07, Vol.47 (7), p.1057-1070 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1070 |
---|---|
container_issue | 7 |
container_start_page | 1057 |
container_title | International journal of circuit theory and applications |
container_volume | 47 |
creator | Bodo, Régine Mbinack, Clément Eyébé Fouda, Jean‐Sire Armand Tonye, Emmanuel |
description | Summary
Conventional rectangular microstrip‐fed patch antennas are initially investigated numerically within the frequency band 2.0 to 2.8 GHz for Wi‐Fi applications. In order to enhance the input parameters of the underlying antennas, three prototypes are designed. A split is diagonally loaded on a conventional radiating patch to achieve a duo triangle‐shaped microstrip‐fed patch antenna in the first step. The conducting ground plane of the conventional and the duo triangle‐shaped patches is modified to design the microstrip‐fed monopole and duo triangle‐shaped monopole antennas in the second and third steps, respectively, within the frequency band of 2.0 to 7.0 GHz. Concepts of voltage and current waves as well as classical electrostatics approach solutions are used to, respectively, investigate the return loss bandwidth and the electric field radiation pattern of the proposed antennas. Numerical simulations show some relevant antenna performances such as a triple‐band, a −10‐dB return loss bandwidth of 29%, a gain of 7.5 dB, and a calculated half power beam width of 120° in E‐plane.
In order to enhance input parameters of the conventional rectangular microstrip‐fed patch antenna, three prototypes are designed. The proposed split‐patch antenna significantly improves the impedance matching as the input resistance varies from 800 Ω for the RMPA to 100 Ω for the SPA for s = 1mm. The studied antenna exhibits broadside radiation pattern as expected, a stable gain of about 7.5 dB, a half power beamwidth of about 120°, a triple‐band and a −10‐dB return loss bandwidth of 29%. |
doi_str_mv | 10.1002/cta.2636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251844137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251844137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-b10a3196c8354be19c3e898bbfa78460492a07315316ff922a7214acce5239043</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYRIbNikjO382EtUfqVKbIrEzpq4TpvSOsF2QN1xBM7ISXAoW1Yzo_fpjd4j5JzChAKwKx1wwgpeHJARBVmmAOXLIRkBSJFKIYpjcuL9GgAE43JEXm_6NgmuQbvcmO_PL7_CziwSZ6KPXfYbdMm20a71kemiXkexw6BXCdpgrEWfNLbrQzwXSduHYe3Q4dYE4wbt3fjQLDE0rT0lRzVuvDn7m2PyfHc7nz6ks6f7x-n1LNVM8iKtKCCnstCC51llqNTcCCmqqsZSZAVkkiGUnOacFnUtGcOS0Qy1NnmMBBkfk4u9b-fatz7-V-u2dza-VIzlVGQZ5WWkLvfUkM47U6vONVt0O0VBDVWqWIEaqoxoukc_mo3Z_cup6fz6l_8BTvJ4HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251844137</pqid></control><display><type>article</type><title>Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bodo, Régine ; Mbinack, Clément ; Eyébé Fouda, Jean‐Sire Armand ; Tonye, Emmanuel</creator><creatorcontrib>Bodo, Régine ; Mbinack, Clément ; Eyébé Fouda, Jean‐Sire Armand ; Tonye, Emmanuel</creatorcontrib><description>Summary
Conventional rectangular microstrip‐fed patch antennas are initially investigated numerically within the frequency band 2.0 to 2.8 GHz for Wi‐Fi applications. In order to enhance the input parameters of the underlying antennas, three prototypes are designed. A split is diagonally loaded on a conventional radiating patch to achieve a duo triangle‐shaped microstrip‐fed patch antenna in the first step. The conducting ground plane of the conventional and the duo triangle‐shaped patches is modified to design the microstrip‐fed monopole and duo triangle‐shaped monopole antennas in the second and third steps, respectively, within the frequency band of 2.0 to 7.0 GHz. Concepts of voltage and current waves as well as classical electrostatics approach solutions are used to, respectively, investigate the return loss bandwidth and the electric field radiation pattern of the proposed antennas. Numerical simulations show some relevant antenna performances such as a triple‐band, a −10‐dB return loss bandwidth of 29%, a gain of 7.5 dB, and a calculated half power beam width of 120° in E‐plane.
In order to enhance input parameters of the conventional rectangular microstrip‐fed patch antenna, three prototypes are designed. The proposed split‐patch antenna significantly improves the impedance matching as the input resistance varies from 800 Ω for the RMPA to 100 Ω for the SPA for s = 1mm. The studied antenna exhibits broadside radiation pattern as expected, a stable gain of about 7.5 dB, a half power beamwidth of about 120°, a triple‐band and a −10‐dB return loss bandwidth of 29%.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.2636</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Antenna radiation patterns ; Antennas ; Bandwidths ; Computer simulation ; Design modifications ; duo triangle‐shaped ; Electric fields ; Electrostatics ; Frequencies ; Ground plane ; input impedance ; Investigations ; Microstrip antennas ; Monopole antennas ; Monopoles ; Parameters ; Patch antennas ; radiated field pattern ; rectangular microstrip‐fed patch antenna ; split‐patch/monopole antennas</subject><ispartof>International journal of circuit theory and applications, 2019-07, Vol.47 (7), p.1057-1070</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-b10a3196c8354be19c3e898bbfa78460492a07315316ff922a7214acce5239043</citedby><cites>FETCH-LOGICAL-c2936-b10a3196c8354be19c3e898bbfa78460492a07315316ff922a7214acce5239043</cites><orcidid>0000-0001-5035-3443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcta.2636$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcta.2636$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Bodo, Régine</creatorcontrib><creatorcontrib>Mbinack, Clément</creatorcontrib><creatorcontrib>Eyébé Fouda, Jean‐Sire Armand</creatorcontrib><creatorcontrib>Tonye, Emmanuel</creatorcontrib><title>Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation</title><title>International journal of circuit theory and applications</title><description>Summary
Conventional rectangular microstrip‐fed patch antennas are initially investigated numerically within the frequency band 2.0 to 2.8 GHz for Wi‐Fi applications. In order to enhance the input parameters of the underlying antennas, three prototypes are designed. A split is diagonally loaded on a conventional radiating patch to achieve a duo triangle‐shaped microstrip‐fed patch antenna in the first step. The conducting ground plane of the conventional and the duo triangle‐shaped patches is modified to design the microstrip‐fed monopole and duo triangle‐shaped monopole antennas in the second and third steps, respectively, within the frequency band of 2.0 to 7.0 GHz. Concepts of voltage and current waves as well as classical electrostatics approach solutions are used to, respectively, investigate the return loss bandwidth and the electric field radiation pattern of the proposed antennas. Numerical simulations show some relevant antenna performances such as a triple‐band, a −10‐dB return loss bandwidth of 29%, a gain of 7.5 dB, and a calculated half power beam width of 120° in E‐plane.
In order to enhance input parameters of the conventional rectangular microstrip‐fed patch antenna, three prototypes are designed. The proposed split‐patch antenna significantly improves the impedance matching as the input resistance varies from 800 Ω for the RMPA to 100 Ω for the SPA for s = 1mm. The studied antenna exhibits broadside radiation pattern as expected, a stable gain of about 7.5 dB, a half power beamwidth of about 120°, a triple‐band and a −10‐dB return loss bandwidth of 29%.</description><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>Computer simulation</subject><subject>Design modifications</subject><subject>duo triangle‐shaped</subject><subject>Electric fields</subject><subject>Electrostatics</subject><subject>Frequencies</subject><subject>Ground plane</subject><subject>input impedance</subject><subject>Investigations</subject><subject>Microstrip antennas</subject><subject>Monopole antennas</subject><subject>Monopoles</subject><subject>Parameters</subject><subject>Patch antennas</subject><subject>radiated field pattern</subject><subject>rectangular microstrip‐fed patch antenna</subject><subject>split‐patch/monopole antennas</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYRIbNikjO382EtUfqVKbIrEzpq4TpvSOsF2QN1xBM7ISXAoW1Yzo_fpjd4j5JzChAKwKx1wwgpeHJARBVmmAOXLIRkBSJFKIYpjcuL9GgAE43JEXm_6NgmuQbvcmO_PL7_CziwSZ6KPXfYbdMm20a71kemiXkexw6BXCdpgrEWfNLbrQzwXSduHYe3Q4dYE4wbt3fjQLDE0rT0lRzVuvDn7m2PyfHc7nz6ks6f7x-n1LNVM8iKtKCCnstCC51llqNTcCCmqqsZSZAVkkiGUnOacFnUtGcOS0Qy1NnmMBBkfk4u9b-fatz7-V-u2dza-VIzlVGQZ5WWkLvfUkM47U6vONVt0O0VBDVWqWIEaqoxoukc_mo3Z_cup6fz6l_8BTvJ4HA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Bodo, Régine</creator><creator>Mbinack, Clément</creator><creator>Eyébé Fouda, Jean‐Sire Armand</creator><creator>Tonye, Emmanuel</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5035-3443</orcidid></search><sort><creationdate>201907</creationdate><title>Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation</title><author>Bodo, Régine ; Mbinack, Clément ; Eyébé Fouda, Jean‐Sire Armand ; Tonye, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-b10a3196c8354be19c3e898bbfa78460492a07315316ff922a7214acce5239043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>Computer simulation</topic><topic>Design modifications</topic><topic>duo triangle‐shaped</topic><topic>Electric fields</topic><topic>Electrostatics</topic><topic>Frequencies</topic><topic>Ground plane</topic><topic>input impedance</topic><topic>Investigations</topic><topic>Microstrip antennas</topic><topic>Monopole antennas</topic><topic>Monopoles</topic><topic>Parameters</topic><topic>Patch antennas</topic><topic>radiated field pattern</topic><topic>rectangular microstrip‐fed patch antenna</topic><topic>split‐patch/monopole antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodo, Régine</creatorcontrib><creatorcontrib>Mbinack, Clément</creatorcontrib><creatorcontrib>Eyébé Fouda, Jean‐Sire Armand</creatorcontrib><creatorcontrib>Tonye, Emmanuel</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodo, Régine</au><au>Mbinack, Clément</au><au>Eyébé Fouda, Jean‐Sire Armand</au><au>Tonye, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2019-07</date><risdate>2019</risdate><volume>47</volume><issue>7</issue><spage>1057</spage><epage>1070</epage><pages>1057-1070</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>Summary
Conventional rectangular microstrip‐fed patch antennas are initially investigated numerically within the frequency band 2.0 to 2.8 GHz for Wi‐Fi applications. In order to enhance the input parameters of the underlying antennas, three prototypes are designed. A split is diagonally loaded on a conventional radiating patch to achieve a duo triangle‐shaped microstrip‐fed patch antenna in the first step. The conducting ground plane of the conventional and the duo triangle‐shaped patches is modified to design the microstrip‐fed monopole and duo triangle‐shaped monopole antennas in the second and third steps, respectively, within the frequency band of 2.0 to 7.0 GHz. Concepts of voltage and current waves as well as classical electrostatics approach solutions are used to, respectively, investigate the return loss bandwidth and the electric field radiation pattern of the proposed antennas. Numerical simulations show some relevant antenna performances such as a triple‐band, a −10‐dB return loss bandwidth of 29%, a gain of 7.5 dB, and a calculated half power beam width of 120° in E‐plane.
In order to enhance input parameters of the conventional rectangular microstrip‐fed patch antenna, three prototypes are designed. The proposed split‐patch antenna significantly improves the impedance matching as the input resistance varies from 800 Ω for the RMPA to 100 Ω for the SPA for s = 1mm. The studied antenna exhibits broadside radiation pattern as expected, a stable gain of about 7.5 dB, a half power beamwidth of about 120°, a triple‐band and a −10‐dB return loss bandwidth of 29%.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cta.2636</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5035-3443</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-9886 |
ispartof | International journal of circuit theory and applications, 2019-07, Vol.47 (7), p.1057-1070 |
issn | 0098-9886 1097-007X |
language | eng |
recordid | cdi_proquest_journals_2251844137 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antenna radiation patterns Antennas Bandwidths Computer simulation Design modifications duo triangle‐shaped Electric fields Electrostatics Frequencies Ground plane input impedance Investigations Microstrip antennas Monopole antennas Monopoles Parameters Patch antennas radiated field pattern rectangular microstrip‐fed patch antenna split‐patch/monopole antennas |
title | Duo triangle‐shaped rectangular microstrip‐fed patch antennas input and output parameters investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duo%20triangle%E2%80%90shaped%20rectangular%20microstrip%E2%80%90fed%20patch%20antennas%20input%20and%20output%20parameters%20investigation&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Bodo,%20R%C3%A9gine&rft.date=2019-07&rft.volume=47&rft.issue=7&rft.spage=1057&rft.epage=1070&rft.pages=1057-1070&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.2636&rft_dat=%3Cproquest_cross%3E2251844137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251844137&rft_id=info:pmid/&rfr_iscdi=true |