A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures
[Display omitted] •A novel method was proposed to determine the damage zone of structures.•A geometrical feature factor was defined to represent the stress concentration.•LCF and creep weight functions were proposed to assess the effect of stress gradient.•A systematic method was developed to estima...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2019-09, Vol.126, p.6-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 6 |
container_title | International journal of fatigue |
container_volume | 126 |
creator | Li, Zhenlei Shi, Duoqi Li, Shaolin Yang, Xiaoguang Miao, Guolei |
description | [Display omitted]
•A novel method was proposed to determine the damage zone of structures.•A geometrical feature factor was defined to represent the stress concentration.•LCF and creep weight functions were proposed to assess the effect of stress gradient.•A systematic method was developed to estimate the creep-fatigue life of structures.
This paper develops a novel weight function modified critical distance method to estimate the creep-fatigue lives of geometrically complex structures. A geometrical feature factor was defined to account for the geometry-induced stress gradient, namely the average normalized stress gradient. The conventional weight function was modified using this concept to assess the weight effect of stress distribution on the low-cycle fatigue (LCF) and creep lives, respectively. The weight function modified critical distance methods were verified by the LCF and the creep test data of the specimens with significantly different geometries. Furthermore, creep-fatigue experiments on the full-scale hollow and solid turbine blades were conducted. The creep-fatigue lives of turbine blades were predicted using the systematical weight function modified methodology. The predicted results showed a good agreement with the experimental lives. Compared with other models, this novel method achieves a significantly better accuracy in the case of LCF, creep and creep-fatigue life predictions. |
doi_str_mv | 10.1016/j.ijfatigue.2019.04.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251702557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112319301549</els_id><sourcerecordid>2251702557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-485104c6f1182ba51553860a36d44d3383485e93ccc2e5cc262cc5a5369a860a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDVhineBnHsuq4iUhsYG1ZZxx66iNi-2A-gn8NS6p2LKZ2Zw5M3MRuqakpIRWt33pequTW41QMkLbkoiScHaCZrSp24ILyU7RjFDBCkoZP0cXMfaEkJbUcoa-FzjuY4JtNhi9wV_gVuuE7TiY5PyAt75z1kGHTXAT0bmY9GAAbyGtfYeTxxCTywLAaQ0ZBNgVx4vwxlnA3uIV-MyHg2Gzzw5rIcCQcExhNGkMEC_RmdWbCFfHPkdv93evy8fi-eXhabl4LowgbSpEIykRprKUNuxdSyolbyqiedUJ0XHe8ExAy40xDGQuFTNGasmrVv9yc3QzeXfBf4z5dNX7MQx5pWJM0powKetM1RNlgo8xgFW7kH8Me0WJOuSuevWXuzrkrohQOfc8uZgmIT_x6SCoaBzkwDoXwCTVefev4wd0j5LO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251702557</pqid></control><display><type>article</type><title>A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Zhenlei ; Shi, Duoqi ; Li, Shaolin ; Yang, Xiaoguang ; Miao, Guolei</creator><creatorcontrib>Li, Zhenlei ; Shi, Duoqi ; Li, Shaolin ; Yang, Xiaoguang ; Miao, Guolei</creatorcontrib><description>[Display omitted]
•A novel method was proposed to determine the damage zone of structures.•A geometrical feature factor was defined to represent the stress concentration.•LCF and creep weight functions were proposed to assess the effect of stress gradient.•A systematic method was developed to estimate the creep-fatigue life of structures.
This paper develops a novel weight function modified critical distance method to estimate the creep-fatigue lives of geometrically complex structures. A geometrical feature factor was defined to account for the geometry-induced stress gradient, namely the average normalized stress gradient. The conventional weight function was modified using this concept to assess the weight effect of stress distribution on the low-cycle fatigue (LCF) and creep lives, respectively. The weight function modified critical distance methods were verified by the LCF and the creep test data of the specimens with significantly different geometries. Furthermore, creep-fatigue experiments on the full-scale hollow and solid turbine blades were conducted. The creep-fatigue lives of turbine blades were predicted using the systematical weight function modified methodology. The predicted results showed a good agreement with the experimental lives. Compared with other models, this novel method achieves a significantly better accuracy in the case of LCF, creep and creep-fatigue life predictions.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2019.04.032</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Creep fatigue ; Creep tests ; Critical distance method ; Fatigue life ; Fatigue tests ; Geometry effect ; Life prediction ; Low cycle fatigue ; Materials fatigue ; Predictions ; Stress concentration ; Stress distribution ; Turbine blades ; Weight function ; Weighting functions</subject><ispartof>International journal of fatigue, 2019-09, Vol.126, p.6-19</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-485104c6f1182ba51553860a36d44d3383485e93ccc2e5cc262cc5a5369a860a3</citedby><cites>FETCH-LOGICAL-c409t-485104c6f1182ba51553860a36d44d3383485e93ccc2e5cc262cc5a5369a860a3</cites><orcidid>0000-0002-7454-5172 ; 0000-0001-7202-945X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2019.04.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Zhenlei</creatorcontrib><creatorcontrib>Shi, Duoqi</creatorcontrib><creatorcontrib>Li, Shaolin</creatorcontrib><creatorcontrib>Yang, Xiaoguang</creatorcontrib><creatorcontrib>Miao, Guolei</creatorcontrib><title>A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures</title><title>International journal of fatigue</title><description>[Display omitted]
•A novel method was proposed to determine the damage zone of structures.•A geometrical feature factor was defined to represent the stress concentration.•LCF and creep weight functions were proposed to assess the effect of stress gradient.•A systematic method was developed to estimate the creep-fatigue life of structures.
This paper develops a novel weight function modified critical distance method to estimate the creep-fatigue lives of geometrically complex structures. A geometrical feature factor was defined to account for the geometry-induced stress gradient, namely the average normalized stress gradient. The conventional weight function was modified using this concept to assess the weight effect of stress distribution on the low-cycle fatigue (LCF) and creep lives, respectively. The weight function modified critical distance methods were verified by the LCF and the creep test data of the specimens with significantly different geometries. Furthermore, creep-fatigue experiments on the full-scale hollow and solid turbine blades were conducted. The creep-fatigue lives of turbine blades were predicted using the systematical weight function modified methodology. The predicted results showed a good agreement with the experimental lives. Compared with other models, this novel method achieves a significantly better accuracy in the case of LCF, creep and creep-fatigue life predictions.</description><subject>Creep fatigue</subject><subject>Creep tests</subject><subject>Critical distance method</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Geometry effect</subject><subject>Life prediction</subject><subject>Low cycle fatigue</subject><subject>Materials fatigue</subject><subject>Predictions</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Turbine blades</subject><subject>Weight function</subject><subject>Weighting functions</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDVhineBnHsuq4iUhsYG1ZZxx66iNi-2A-gn8NS6p2LKZ2Zw5M3MRuqakpIRWt33pequTW41QMkLbkoiScHaCZrSp24ILyU7RjFDBCkoZP0cXMfaEkJbUcoa-FzjuY4JtNhi9wV_gVuuE7TiY5PyAt75z1kGHTXAT0bmY9GAAbyGtfYeTxxCTywLAaQ0ZBNgVx4vwxlnA3uIV-MyHg2Gzzw5rIcCQcExhNGkMEC_RmdWbCFfHPkdv93evy8fi-eXhabl4LowgbSpEIykRprKUNuxdSyolbyqiedUJ0XHe8ExAy40xDGQuFTNGasmrVv9yc3QzeXfBf4z5dNX7MQx5pWJM0powKetM1RNlgo8xgFW7kH8Me0WJOuSuevWXuzrkrohQOfc8uZgmIT_x6SCoaBzkwDoXwCTVefev4wd0j5LO</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Li, Zhenlei</creator><creator>Shi, Duoqi</creator><creator>Li, Shaolin</creator><creator>Yang, Xiaoguang</creator><creator>Miao, Guolei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7454-5172</orcidid><orcidid>https://orcid.org/0000-0001-7202-945X</orcidid></search><sort><creationdate>201909</creationdate><title>A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures</title><author>Li, Zhenlei ; Shi, Duoqi ; Li, Shaolin ; Yang, Xiaoguang ; Miao, Guolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-485104c6f1182ba51553860a36d44d3383485e93ccc2e5cc262cc5a5369a860a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Creep fatigue</topic><topic>Creep tests</topic><topic>Critical distance method</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Geometry effect</topic><topic>Life prediction</topic><topic>Low cycle fatigue</topic><topic>Materials fatigue</topic><topic>Predictions</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Turbine blades</topic><topic>Weight function</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhenlei</creatorcontrib><creatorcontrib>Shi, Duoqi</creatorcontrib><creatorcontrib>Li, Shaolin</creatorcontrib><creatorcontrib>Yang, Xiaoguang</creatorcontrib><creatorcontrib>Miao, Guolei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhenlei</au><au>Shi, Duoqi</au><au>Li, Shaolin</au><au>Yang, Xiaoguang</au><au>Miao, Guolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures</atitle><jtitle>International journal of fatigue</jtitle><date>2019-09</date><risdate>2019</risdate><volume>126</volume><spage>6</spage><epage>19</epage><pages>6-19</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>[Display omitted]
•A novel method was proposed to determine the damage zone of structures.•A geometrical feature factor was defined to represent the stress concentration.•LCF and creep weight functions were proposed to assess the effect of stress gradient.•A systematic method was developed to estimate the creep-fatigue life of structures.
This paper develops a novel weight function modified critical distance method to estimate the creep-fatigue lives of geometrically complex structures. A geometrical feature factor was defined to account for the geometry-induced stress gradient, namely the average normalized stress gradient. The conventional weight function was modified using this concept to assess the weight effect of stress distribution on the low-cycle fatigue (LCF) and creep lives, respectively. The weight function modified critical distance methods were verified by the LCF and the creep test data of the specimens with significantly different geometries. Furthermore, creep-fatigue experiments on the full-scale hollow and solid turbine blades were conducted. The creep-fatigue lives of turbine blades were predicted using the systematical weight function modified methodology. The predicted results showed a good agreement with the experimental lives. Compared with other models, this novel method achieves a significantly better accuracy in the case of LCF, creep and creep-fatigue life predictions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2019.04.032</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7454-5172</orcidid><orcidid>https://orcid.org/0000-0001-7202-945X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2019-09, Vol.126, p.6-19 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2251702557 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Creep fatigue Creep tests Critical distance method Fatigue life Fatigue tests Geometry effect Life prediction Low cycle fatigue Materials fatigue Predictions Stress concentration Stress distribution Turbine blades Weight function Weighting functions |
title | A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematical%20weight%20function%20modified%20critical%20distance%20method%20to%20estimate%20the%20creep-fatigue%20life%20of%20geometrically%20different%20structures&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Li,%20Zhenlei&rft.date=2019-09&rft.volume=126&rft.spage=6&rft.epage=19&rft.pages=6-19&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2019.04.032&rft_dat=%3Cproquest_cross%3E2251702557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251702557&rft_id=info:pmid/&rft_els_id=S0142112319301549&rfr_iscdi=true |