Experimental validation of an ANN model for random loading fatigue analysis

•The paper presents the validation of a generalised ANN model for a broad of component conditions and material properties.•Validation of theoretical ANN models with experimental data is rare in the literature.•The results of the validation show ANN to be a better approach for fatigue analysis than e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2019-09, Vol.126, p.112-121
Hauptverfasser: Ramachandra, S., Durodola, J.F., Fellows, N.A., Gerguri, S., Thite, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue
container_start_page 112
container_title International journal of fatigue
container_volume 126
creator Ramachandra, S.
Durodola, J.F.
Fellows, N.A.
Gerguri, S.
Thite, A.
description •The paper presents the validation of a generalised ANN model for a broad of component conditions and material properties.•Validation of theoretical ANN models with experimental data is rare in the literature.•The results of the validation show ANN to be a better approach for fatigue analysis than existing frequency domain methods.•The results of the study also show that rainflow time domain fatigue analysis is not universally agreeable with experimental results. The use of artificial intelligence especially based on artificial neural networks (ANN) is now prevalent in many fields of data analysis and interpretation. There have been a number of papers published in the literature on the use of ANN for fatigue characterisation. Most of these have however been developed for rather focussed application with limited capability for fatigue life prediction for a broad scope of material and loading conditions. The authors recently presented a uniquely generalised ANN model that is capable of making fatigue life prediction for a broad range of material fatigue properties and loading spectral forms. The model was developed using simulated data albeit subject to conceivable constraints between possible materials properties and load forms. This paper presents a validation of the ANN model using a Society of Automotive Engineers (SAE) random fatigue loading experimental test data. The capabilities and potentials of the model are demonstrated by comparison with the SAE random load fatigue test results and with results obtained from other predictive methods. The performance of the ANN is highly encouraging as a general tool for random loading fatigue analysis.
doi_str_mv 10.1016/j.ijfatigue.2019.04.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251702097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112319301525</els_id><sourcerecordid>2251702097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-7ecd86aa52100944275403c118cb6e986725375e3bbcbdf9acad1c10ce6b58a83</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEuXxG7DEOWHt2HFyrBAvUcEFzpZjbypHaVzsFMG_x6gVV057mZmd-Qi5YlAyYPXNUPqhN7Nf77DkwNoSRAm8OSIL1qi2qITkx2QBTPCCMV6dkrOUBgBoQckFeb772mL0G5xmM9JPM3qXs8JEQ0_NRJcvL3QTHI60D5FGM7mwoWMwzk9reviadWb8Tj5dkJPejAkvD_ecvN_fvd0-FqvXh6fb5aqwQsi5UGhdUxsjOcsthOBKCqgsY43tamybWnFZKYlV19nO9a2xxjHLwGLdycY01Tm53uduY_jYYZr1EHYxl0iac8kUcGhVVqm9ysaQUsReb_NOE781A_1LTg_6j5z-JadB6EwuO5d7J-YRnx6jTtbjZNH5iHbWLvh_M34A7tl7XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251702097</pqid></control><display><type>article</type><title>Experimental validation of an ANN model for random loading fatigue analysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ramachandra, S. ; Durodola, J.F. ; Fellows, N.A. ; Gerguri, S. ; Thite, A.</creator><creatorcontrib>Ramachandra, S. ; Durodola, J.F. ; Fellows, N.A. ; Gerguri, S. ; Thite, A.</creatorcontrib><description>•The paper presents the validation of a generalised ANN model for a broad of component conditions and material properties.•Validation of theoretical ANN models with experimental data is rare in the literature.•The results of the validation show ANN to be a better approach for fatigue analysis than existing frequency domain methods.•The results of the study also show that rainflow time domain fatigue analysis is not universally agreeable with experimental results. The use of artificial intelligence especially based on artificial neural networks (ANN) is now prevalent in many fields of data analysis and interpretation. There have been a number of papers published in the literature on the use of ANN for fatigue characterisation. Most of these have however been developed for rather focussed application with limited capability for fatigue life prediction for a broad scope of material and loading conditions. The authors recently presented a uniquely generalised ANN model that is capable of making fatigue life prediction for a broad range of material fatigue properties and loading spectral forms. The model was developed using simulated data albeit subject to conceivable constraints between possible materials properties and load forms. This paper presents a validation of the ANN model using a Society of Automotive Engineers (SAE) random fatigue loading experimental test data. The capabilities and potentials of the model are demonstrated by comparison with the SAE random load fatigue test results and with results obtained from other predictive methods. The performance of the ANN is highly encouraging as a general tool for random loading fatigue analysis.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2019.04.028</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Artificial intelligence ; Artificial neural networks ; Automotive engineering ; Computer simulation ; Data analysis ; Fatigue life ; Fatigue tests ; Frequency domain ; Life prediction ; Material properties ; Materials fatigue ; Performance prediction ; Random fatigue ; Random loads ; SAE ; Time domain</subject><ispartof>International journal of fatigue, 2019-09, Vol.126, p.112-121</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-7ecd86aa52100944275403c118cb6e986725375e3bbcbdf9acad1c10ce6b58a83</citedby><cites>FETCH-LOGICAL-c445t-7ecd86aa52100944275403c118cb6e986725375e3bbcbdf9acad1c10ce6b58a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2019.04.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ramachandra, S.</creatorcontrib><creatorcontrib>Durodola, J.F.</creatorcontrib><creatorcontrib>Fellows, N.A.</creatorcontrib><creatorcontrib>Gerguri, S.</creatorcontrib><creatorcontrib>Thite, A.</creatorcontrib><title>Experimental validation of an ANN model for random loading fatigue analysis</title><title>International journal of fatigue</title><description>•The paper presents the validation of a generalised ANN model for a broad of component conditions and material properties.•Validation of theoretical ANN models with experimental data is rare in the literature.•The results of the validation show ANN to be a better approach for fatigue analysis than existing frequency domain methods.•The results of the study also show that rainflow time domain fatigue analysis is not universally agreeable with experimental results. The use of artificial intelligence especially based on artificial neural networks (ANN) is now prevalent in many fields of data analysis and interpretation. There have been a number of papers published in the literature on the use of ANN for fatigue characterisation. Most of these have however been developed for rather focussed application with limited capability for fatigue life prediction for a broad scope of material and loading conditions. The authors recently presented a uniquely generalised ANN model that is capable of making fatigue life prediction for a broad range of material fatigue properties and loading spectral forms. The model was developed using simulated data albeit subject to conceivable constraints between possible materials properties and load forms. This paper presents a validation of the ANN model using a Society of Automotive Engineers (SAE) random fatigue loading experimental test data. The capabilities and potentials of the model are demonstrated by comparison with the SAE random load fatigue test results and with results obtained from other predictive methods. The performance of the ANN is highly encouraging as a general tool for random loading fatigue analysis.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automotive engineering</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Frequency domain</subject><subject>Life prediction</subject><subject>Material properties</subject><subject>Materials fatigue</subject><subject>Performance prediction</subject><subject>Random fatigue</subject><subject>Random loads</subject><subject>SAE</subject><subject>Time domain</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEuXxG7DEOWHt2HFyrBAvUcEFzpZjbypHaVzsFMG_x6gVV057mZmd-Qi5YlAyYPXNUPqhN7Nf77DkwNoSRAm8OSIL1qi2qITkx2QBTPCCMV6dkrOUBgBoQckFeb772mL0G5xmM9JPM3qXs8JEQ0_NRJcvL3QTHI60D5FGM7mwoWMwzk9reviadWb8Tj5dkJPejAkvD_ecvN_fvd0-FqvXh6fb5aqwQsi5UGhdUxsjOcsthOBKCqgsY43tamybWnFZKYlV19nO9a2xxjHLwGLdycY01Tm53uduY_jYYZr1EHYxl0iac8kUcGhVVqm9ysaQUsReb_NOE781A_1LTg_6j5z-JadB6EwuO5d7J-YRnx6jTtbjZNH5iHbWLvh_M34A7tl7XA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Ramachandra, S.</creator><creator>Durodola, J.F.</creator><creator>Fellows, N.A.</creator><creator>Gerguri, S.</creator><creator>Thite, A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190901</creationdate><title>Experimental validation of an ANN model for random loading fatigue analysis</title><author>Ramachandra, S. ; Durodola, J.F. ; Fellows, N.A. ; Gerguri, S. ; Thite, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-7ecd86aa52100944275403c118cb6e986725375e3bbcbdf9acad1c10ce6b58a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automotive engineering</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Frequency domain</topic><topic>Life prediction</topic><topic>Material properties</topic><topic>Materials fatigue</topic><topic>Performance prediction</topic><topic>Random fatigue</topic><topic>Random loads</topic><topic>SAE</topic><topic>Time domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramachandra, S.</creatorcontrib><creatorcontrib>Durodola, J.F.</creatorcontrib><creatorcontrib>Fellows, N.A.</creatorcontrib><creatorcontrib>Gerguri, S.</creatorcontrib><creatorcontrib>Thite, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramachandra, S.</au><au>Durodola, J.F.</au><au>Fellows, N.A.</au><au>Gerguri, S.</au><au>Thite, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of an ANN model for random loading fatigue analysis</atitle><jtitle>International journal of fatigue</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>126</volume><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The paper presents the validation of a generalised ANN model for a broad of component conditions and material properties.•Validation of theoretical ANN models with experimental data is rare in the literature.•The results of the validation show ANN to be a better approach for fatigue analysis than existing frequency domain methods.•The results of the study also show that rainflow time domain fatigue analysis is not universally agreeable with experimental results. The use of artificial intelligence especially based on artificial neural networks (ANN) is now prevalent in many fields of data analysis and interpretation. There have been a number of papers published in the literature on the use of ANN for fatigue characterisation. Most of these have however been developed for rather focussed application with limited capability for fatigue life prediction for a broad scope of material and loading conditions. The authors recently presented a uniquely generalised ANN model that is capable of making fatigue life prediction for a broad range of material fatigue properties and loading spectral forms. The model was developed using simulated data albeit subject to conceivable constraints between possible materials properties and load forms. This paper presents a validation of the ANN model using a Society of Automotive Engineers (SAE) random fatigue loading experimental test data. The capabilities and potentials of the model are demonstrated by comparison with the SAE random load fatigue test results and with results obtained from other predictive methods. The performance of the ANN is highly encouraging as a general tool for random loading fatigue analysis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2019.04.028</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2019-09, Vol.126, p.112-121
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2251702097
source Elsevier ScienceDirect Journals Complete
subjects Artificial intelligence
Artificial neural networks
Automotive engineering
Computer simulation
Data analysis
Fatigue life
Fatigue tests
Frequency domain
Life prediction
Material properties
Materials fatigue
Performance prediction
Random fatigue
Random loads
SAE
Time domain
title Experimental validation of an ANN model for random loading fatigue analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20an%20ANN%20model%20for%20random%20loading%20fatigue%20analysis&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Ramachandra,%20S.&rft.date=2019-09-01&rft.volume=126&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2019.04.028&rft_dat=%3Cproquest_cross%3E2251702097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251702097&rft_id=info:pmid/&rft_els_id=S0142112319301525&rfr_iscdi=true