EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER
Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly use...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2019-06, Vol.47 (3), p.1268-1287 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1287 |
---|---|
container_issue | 3 |
container_start_page | 1268 |
container_title | The Annals of statistics |
container_volume | 47 |
creator | Deligiannidis, George Bouchard-Côté, Alexandre Doucet, Arnaud |
description | Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process. |
doi_str_mv | 10.1214/18-AOS1714 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2251699798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26730423</jstor_id><sourcerecordid>26730423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</originalsourceid><addsrcrecordid>eNo90M9LwzAcBfAgCs7pxbtQ8CZU883vHGuXbYW6jq0DdypZloJD7Uy2g_-90w1P7_LhPXgI3QJ-BALsCVSaVXOQwM5Qj4BQqdJCnKMexhqnnAp2ia5i3GCMuWa0h7h5nVYTM6mLrEzMbFQNiryol0k1TOqxSZ6rxSRfJtNsVhd5aZJ59jItzewaXbT2PfqbU_bRYmjqfJyW1ajIszJ1FOQuVcCdEC1frTBrhfeKawvSr1fKYcw8k2vsgApviZWCO2_1GhyjGJwilmtF--j-2LsN3dfex12z6fbh8zDZEMJBaC3_1MNRudDFGHzbbMPbhw3fDeDm95YGVHO65YDvjngTd134l0RIihmh9Ae_Glfr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251699798</pqid></control><display><type>article</type><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><source>Jstor Complete Legacy</source><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creator><creatorcontrib>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creatorcontrib><description>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1714</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Automatic control ; Curvature ; Ergodic processes ; Geometry ; Mapping ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Parameterization ; Random walk ; Statistics</subject><ispartof>The Annals of statistics, 2019-06, Vol.47 (3), p.1268-1287</ispartof><rights>Institute of Mathematical Statistics, 2019</rights><rights>Copyright Institute of Mathematical Statistics Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</citedby><cites>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26730423$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26730423$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Deligiannidis, George</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><title>The Annals of statistics</title><description>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Curvature</subject><subject>Ergodic processes</subject><subject>Geometry</subject><subject>Mapping</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Parameterization</subject><subject>Random walk</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAcBfAgCs7pxbtQ8CZU883vHGuXbYW6jq0DdypZloJD7Uy2g_-90w1P7_LhPXgI3QJ-BALsCVSaVXOQwM5Qj4BQqdJCnKMexhqnnAp2ia5i3GCMuWa0h7h5nVYTM6mLrEzMbFQNiryol0k1TOqxSZ6rxSRfJtNsVhd5aZJ59jItzewaXbT2PfqbU_bRYmjqfJyW1ajIszJ1FOQuVcCdEC1frTBrhfeKawvSr1fKYcw8k2vsgApviZWCO2_1GhyjGJwilmtF--j-2LsN3dfex12z6fbh8zDZEMJBaC3_1MNRudDFGHzbbMPbhw3fDeDm95YGVHO65YDvjngTd134l0RIihmh9Ae_Glfr</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Deligiannidis, George</creator><creator>Bouchard-Côté, Alexandre</creator><creator>Doucet, Arnaud</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190601</creationdate><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><author>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Curvature</topic><topic>Ergodic processes</topic><topic>Geometry</topic><topic>Mapping</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Parameterization</topic><topic>Random walk</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deligiannidis, George</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deligiannidis, George</au><au>Bouchard-Côté, Alexandre</au><au>Doucet, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</atitle><jtitle>The Annals of statistics</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>1268</spage><epage>1287</epage><pages>1268-1287</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1714</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2019-06, Vol.47 (3), p.1268-1287 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_proquest_journals_2251699798 |
source | Jstor Complete Legacy; Project Euclid; JSTOR; EZB Electronic Journals Library |
subjects | Algorithms Automatic control Curvature Ergodic processes Geometry Mapping Markov analysis Markov chains Monte Carlo simulation Parameterization Random walk Statistics |
title | EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXPONENTIAL%20ERGODICITY%20OF%20THE%20BOUNCY%20PARTICLE%20SAMPLER&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Deligiannidis,%20George&rft.date=2019-06-01&rft.volume=47&rft.issue=3&rft.spage=1268&rft.epage=1287&rft.pages=1268-1287&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1714&rft_dat=%3Cjstor_proqu%3E26730423%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251699798&rft_id=info:pmid/&rft_jstor_id=26730423&rfr_iscdi=true |