EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER

Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2019-06, Vol.47 (3), p.1268-1287
Hauptverfasser: Deligiannidis, George, Bouchard-Côté, Alexandre, Doucet, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 3
container_start_page 1268
container_title The Annals of statistics
container_volume 47
creator Deligiannidis, George
Bouchard-Côté, Alexandre
Doucet, Arnaud
description Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.
doi_str_mv 10.1214/18-AOS1714
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2251699798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26730423</jstor_id><sourcerecordid>26730423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</originalsourceid><addsrcrecordid>eNo90M9LwzAcBfAgCs7pxbtQ8CZU883vHGuXbYW6jq0DdypZloJD7Uy2g_-90w1P7_LhPXgI3QJ-BALsCVSaVXOQwM5Qj4BQqdJCnKMexhqnnAp2ia5i3GCMuWa0h7h5nVYTM6mLrEzMbFQNiryol0k1TOqxSZ6rxSRfJtNsVhd5aZJ59jItzewaXbT2PfqbU_bRYmjqfJyW1ajIszJ1FOQuVcCdEC1frTBrhfeKawvSr1fKYcw8k2vsgApviZWCO2_1GhyjGJwilmtF--j-2LsN3dfex12z6fbh8zDZEMJBaC3_1MNRudDFGHzbbMPbhw3fDeDm95YGVHO65YDvjngTd134l0RIihmh9Ae_Glfr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251699798</pqid></control><display><type>article</type><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><source>Jstor Complete Legacy</source><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creator><creatorcontrib>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</creatorcontrib><description>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1714</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Automatic control ; Curvature ; Ergodic processes ; Geometry ; Mapping ; Markov analysis ; Markov chains ; Monte Carlo simulation ; Parameterization ; Random walk ; Statistics</subject><ispartof>The Annals of statistics, 2019-06, Vol.47 (3), p.1268-1287</ispartof><rights>Institute of Mathematical Statistics, 2019</rights><rights>Copyright Institute of Mathematical Statistics Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</citedby><cites>FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26730423$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26730423$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Deligiannidis, George</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><title>The Annals of statistics</title><description>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</description><subject>Algorithms</subject><subject>Automatic control</subject><subject>Curvature</subject><subject>Ergodic processes</subject><subject>Geometry</subject><subject>Mapping</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Parameterization</subject><subject>Random walk</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo90M9LwzAcBfAgCs7pxbtQ8CZU883vHGuXbYW6jq0DdypZloJD7Uy2g_-90w1P7_LhPXgI3QJ-BALsCVSaVXOQwM5Qj4BQqdJCnKMexhqnnAp2ia5i3GCMuWa0h7h5nVYTM6mLrEzMbFQNiryol0k1TOqxSZ6rxSRfJtNsVhd5aZJ59jItzewaXbT2PfqbU_bRYmjqfJyW1ajIszJ1FOQuVcCdEC1frTBrhfeKawvSr1fKYcw8k2vsgApviZWCO2_1GhyjGJwilmtF--j-2LsN3dfex12z6fbh8zDZEMJBaC3_1MNRudDFGHzbbMPbhw3fDeDm95YGVHO65YDvjngTd134l0RIihmh9Ae_Glfr</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Deligiannidis, George</creator><creator>Bouchard-Côté, Alexandre</creator><creator>Doucet, Arnaud</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190601</creationdate><title>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</title><author>Deligiannidis, George ; Bouchard-Côté, Alexandre ; Doucet, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-815c66f5bb04f6ee859a17edb8c004e47d0c136ea2a765cea9d1c4301c82a5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automatic control</topic><topic>Curvature</topic><topic>Ergodic processes</topic><topic>Geometry</topic><topic>Mapping</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Parameterization</topic><topic>Random walk</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deligiannidis, George</creatorcontrib><creatorcontrib>Bouchard-Côté, Alexandre</creatorcontrib><creatorcontrib>Doucet, Arnaud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deligiannidis, George</au><au>Bouchard-Côté, Alexandre</au><au>Doucet, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER</atitle><jtitle>The Annals of statistics</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>1268</spage><epage>1287</epage><pages>1268-1287</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Nonreversible Markov chain Monte Carlo schemes based on piecewise deterministic Markov processes have been recently introduced in applied probability, automatic control, physics and statistics. Although these algorithms demonstrate experimentally good performance and are accordingly increasingly used in a wide range of applications, geometric ergodicity results for such schemes have only been established so far under very restrictive assumptions. We give here verifiable conditions on the target distribution under which the Bouncy Particle Sampler algorithm introduced in [Phys. Rev. E 85 (2012) 026703, 1671–1691] is geometrically ergodic and we provide a central limit theorem for the associated ergodic averages. This holds essentially whenever the target satisfies a curvature condition and the growth of the negative logarithm of the target is at least linear and at most quadratic. For target distributions with thinner tails, we propose an original modification of this scheme that is geometrically ergodic. For targets with thicker tails, we extend the idea pioneered in [Ann. Statist. 40 (2012) 3050–3076] in a random walk Metropolis context. We establish geometric ergodicity of the Bouncy Particle Sampler with respect to an appropriate transformation of the target. Mapping the resulting process back to the original parameterization, we obtain a geometrically ergodic piecewise deterministic Markov process.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1714</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2019-06, Vol.47 (3), p.1268-1287
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2251699798
source Jstor Complete Legacy; Project Euclid; JSTOR; EZB Electronic Journals Library
subjects Algorithms
Automatic control
Curvature
Ergodic processes
Geometry
Mapping
Markov analysis
Markov chains
Monte Carlo simulation
Parameterization
Random walk
Statistics
title EXPONENTIAL ERGODICITY OF THE BOUNCY PARTICLE SAMPLER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXPONENTIAL%20ERGODICITY%20OF%20THE%20BOUNCY%20PARTICLE%20SAMPLER&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Deligiannidis,%20George&rft.date=2019-06-01&rft.volume=47&rft.issue=3&rft.spage=1268&rft.epage=1287&rft.pages=1268-1287&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1714&rft_dat=%3Cjstor_proqu%3E26730423%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251699798&rft_id=info:pmid/&rft_jstor_id=26730423&rfr_iscdi=true