5G NR CA-Polar Maximum Likelihood Decoding by GRAND

CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maximum Likelihood (ML) decoders, GRAND, that can be u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-02
Hauptverfasser: Duffy, Ken, Solomon, Amit, Konwar, Kishori M, Medard, Muriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maximum Likelihood (ML) decoders, GRAND, that can be used with any block-code. As published theoretical results indicate that GRAND is computationally efficient for short-length, high-rate codes and 5G CA-Polar codes are in that class, here we consider GRAND's utility for decoding them. Simulation results indicate that decoding of 5G CA-Polar codes by GRAND, and a simple soft detection variant, is a practical possibility.
ISSN:2331-8422