Nondoubling Calderón–Zygmund theory: a dyadic approach
Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are compara...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2019-08, Vol.25 (4), p.1267-1292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1292 |
---|---|
container_issue | 4 |
container_start_page | 1267 |
container_title | The Journal of fourier analysis and applications |
container_volume | 25 |
creator | Conde-Alonso, José M. Parcet, Javier |
description | Given a measure
μ
of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of
supp
(
μ
)
which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions:
A dyadic form of Tolsa’s RBMO space which contains it.
Lerner’s domination and
A
2
-type bounds for nondoubling measures.
A noncommutative form of nonhomogeneous Calderón–Zygmund theory.
Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the
L
p
scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative
L
p
spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet. |
doi_str_mv | 10.1007/s00041-018-9624-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251182859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251182859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTQnmcwk7qRoFYpudOMm5NoL7UxNOovZ-Q4-io_gm_gkpozgytX5D_wX-BA6B3IJhNRXiRBSAiYgsKxoicsDNALOAHPB4TBrUsmsK3mMTlJaEUKB1WyE5GPbuLYz62UzLyZ67Xz8-my-3z9e-_mma1yxW_g29teFLlyv3dIWeruNrbaLU3QU9Dr5s987Ri93t8-Tezx7mj5MbmbYMi53WDAOhntpXQ2mqq0LzjChdX4drW2ojRXSsyAEBG2lsJZIZ7UPRhgC3LMxuhh68-xb59NOrdouNnlSUcoBBBVcZhcMLhvblKIPahuXGx17BUTtCamBkMqE1J6QKnOGDpmUvc3cx7_m_0M_OyBrIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251182859</pqid></control><display><type>article</type><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><source>SpringerLink (Online service)</source><creator>Conde-Alonso, José M. ; Parcet, Javier</creator><creatorcontrib>Conde-Alonso, José M. ; Parcet, Javier</creatorcontrib><description>Given a measure
μ
of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of
supp
(
μ
)
which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions:
A dyadic form of Tolsa’s RBMO space which contains it.
Lerner’s domination and
A
2
-type bounds for nondoubling measures.
A noncommutative form of nonhomogeneous Calderón–Zygmund theory.
Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the
L
p
scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative
L
p
spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-018-9624-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Banach spaces ; Filtration ; Fourier Analysis ; Harmonic analysis ; Interpolation ; Martingales ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Obstructions ; Partial Differential Equations ; Polynomials ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2019-08, Vol.25 (4), p.1267-1292</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</citedby><cites>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-018-9624-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-018-9624-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Conde-Alonso, José M.</creatorcontrib><creatorcontrib>Parcet, Javier</creatorcontrib><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Given a measure
μ
of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of
supp
(
μ
)
which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions:
A dyadic form of Tolsa’s RBMO space which contains it.
Lerner’s domination and
A
2
-type bounds for nondoubling measures.
A noncommutative form of nonhomogeneous Calderón–Zygmund theory.
Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the
L
p
scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative
L
p
spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Banach spaces</subject><subject>Filtration</subject><subject>Fourier Analysis</subject><subject>Harmonic analysis</subject><subject>Interpolation</subject><subject>Martingales</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Obstructions</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTQnmcwk7qRoFYpudOMm5NoL7UxNOovZ-Q4-io_gm_gkpozgytX5D_wX-BA6B3IJhNRXiRBSAiYgsKxoicsDNALOAHPB4TBrUsmsK3mMTlJaEUKB1WyE5GPbuLYz62UzLyZ67Xz8-my-3z9e-_mma1yxW_g29teFLlyv3dIWeruNrbaLU3QU9Dr5s987Ri93t8-Tezx7mj5MbmbYMi53WDAOhntpXQ2mqq0LzjChdX4drW2ojRXSsyAEBG2lsJZIZ7UPRhgC3LMxuhh68-xb59NOrdouNnlSUcoBBBVcZhcMLhvblKIPahuXGx17BUTtCamBkMqE1J6QKnOGDpmUvc3cx7_m_0M_OyBrIw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Conde-Alonso, José M.</creator><creator>Parcet, Javier</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190815</creationdate><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><author>Conde-Alonso, José M. ; Parcet, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Banach spaces</topic><topic>Filtration</topic><topic>Fourier Analysis</topic><topic>Harmonic analysis</topic><topic>Interpolation</topic><topic>Martingales</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Obstructions</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conde-Alonso, José M.</creatorcontrib><creatorcontrib>Parcet, Javier</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conde-Alonso, José M.</au><au>Parcet, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondoubling Calderón–Zygmund theory: a dyadic approach</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>1267</spage><epage>1292</epage><pages>1267-1292</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Given a measure
μ
of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of
supp
(
μ
)
which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions:
A dyadic form of Tolsa’s RBMO space which contains it.
Lerner’s domination and
A
2
-type bounds for nondoubling measures.
A noncommutative form of nonhomogeneous Calderón–Zygmund theory.
Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the
L
p
scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative
L
p
spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-018-9624-4</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2019-08, Vol.25 (4), p.1267-1292 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_2251182859 |
source | SpringerLink (Online service) |
subjects | Abstract Harmonic Analysis Approximations and Expansions Banach spaces Filtration Fourier Analysis Harmonic analysis Interpolation Martingales Mathematical Methods in Physics Mathematics Mathematics and Statistics Obstructions Partial Differential Equations Polynomials Signal,Image and Speech Processing |
title | Nondoubling Calderón–Zygmund theory: a dyadic approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondoubling%20Calder%C3%B3n%E2%80%93Zygmund%20theory:%20a%20dyadic%20approach&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Conde-Alonso,%20Jos%C3%A9%20M.&rft.date=2019-08-15&rft.volume=25&rft.issue=4&rft.spage=1267&rft.epage=1292&rft.pages=1267-1292&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-018-9624-4&rft_dat=%3Cproquest_cross%3E2251182859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251182859&rft_id=info:pmid/&rfr_iscdi=true |