Nondoubling Calderón–Zygmund theory: a dyadic approach

Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are compara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2019-08, Vol.25 (4), p.1267-1292
Hauptverfasser: Conde-Alonso, José M., Parcet, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1292
container_issue 4
container_start_page 1267
container_title The Journal of fourier analysis and applications
container_volume 25
creator Conde-Alonso, José M.
Parcet, Javier
description Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions: A dyadic form of Tolsa’s RBMO space which contains it. Lerner’s domination and A 2 -type bounds for nondoubling measures. A noncommutative form of nonhomogeneous Calderón–Zygmund theory. Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the L p scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative L p spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.
doi_str_mv 10.1007/s00041-018-9624-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251182859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251182859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4G7AdTQnmcwk7qRoFYpudOMm5NoL7UxNOovZ-Q4-io_gm_gkpozgytX5D_wX-BA6B3IJhNRXiRBSAiYgsKxoicsDNALOAHPB4TBrUsmsK3mMTlJaEUKB1WyE5GPbuLYz62UzLyZ67Xz8-my-3z9e-_mma1yxW_g29teFLlyv3dIWeruNrbaLU3QU9Dr5s987Ri93t8-Tezx7mj5MbmbYMi53WDAOhntpXQ2mqq0LzjChdX4drW2ojRXSsyAEBG2lsJZIZ7UPRhgC3LMxuhh68-xb59NOrdouNnlSUcoBBBVcZhcMLhvblKIPahuXGx17BUTtCamBkMqE1J6QKnOGDpmUvc3cx7_m_0M_OyBrIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251182859</pqid></control><display><type>article</type><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><source>SpringerLink (Online service)</source><creator>Conde-Alonso, José M. ; Parcet, Javier</creator><creatorcontrib>Conde-Alonso, José M. ; Parcet, Javier</creatorcontrib><description>Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions: A dyadic form of Tolsa’s RBMO space which contains it. Lerner’s domination and A 2 -type bounds for nondoubling measures. A noncommutative form of nonhomogeneous Calderón–Zygmund theory. Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the L p scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative L p spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-018-9624-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Banach spaces ; Filtration ; Fourier Analysis ; Harmonic analysis ; Interpolation ; Martingales ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Obstructions ; Partial Differential Equations ; Polynomials ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2019-08, Vol.25 (4), p.1267-1292</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</citedby><cites>FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-018-9624-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-018-9624-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Conde-Alonso, José M.</creatorcontrib><creatorcontrib>Parcet, Javier</creatorcontrib><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions: A dyadic form of Tolsa’s RBMO space which contains it. Lerner’s domination and A 2 -type bounds for nondoubling measures. A noncommutative form of nonhomogeneous Calderón–Zygmund theory. Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the L p scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative L p spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Banach spaces</subject><subject>Filtration</subject><subject>Fourier Analysis</subject><subject>Harmonic analysis</subject><subject>Interpolation</subject><subject>Martingales</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Obstructions</subject><subject>Partial Differential Equations</subject><subject>Polynomials</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4G7AdTQnmcwk7qRoFYpudOMm5NoL7UxNOovZ-Q4-io_gm_gkpozgytX5D_wX-BA6B3IJhNRXiRBSAiYgsKxoicsDNALOAHPB4TBrUsmsK3mMTlJaEUKB1WyE5GPbuLYz62UzLyZ67Xz8-my-3z9e-_mma1yxW_g29teFLlyv3dIWeruNrbaLU3QU9Dr5s987Ri93t8-Tezx7mj5MbmbYMi53WDAOhntpXQ2mqq0LzjChdX4drW2ojRXSsyAEBG2lsJZIZ7UPRhgC3LMxuhh68-xb59NOrdouNnlSUcoBBBVcZhcMLhvblKIPahuXGx17BUTtCamBkMqE1J6QKnOGDpmUvc3cx7_m_0M_OyBrIw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Conde-Alonso, José M.</creator><creator>Parcet, Javier</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190815</creationdate><title>Nondoubling Calderón–Zygmund theory: a dyadic approach</title><author>Conde-Alonso, José M. ; Parcet, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8351b5e9cd71b67cdfdb38aad71d27cf7bc89e3f881fac98cc09dcaefb8b015e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Banach spaces</topic><topic>Filtration</topic><topic>Fourier Analysis</topic><topic>Harmonic analysis</topic><topic>Interpolation</topic><topic>Martingales</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Obstructions</topic><topic>Partial Differential Equations</topic><topic>Polynomials</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conde-Alonso, José M.</creatorcontrib><creatorcontrib>Parcet, Javier</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conde-Alonso, José M.</au><au>Parcet, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondoubling Calderón–Zygmund theory: a dyadic approach</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>25</volume><issue>4</issue><spage>1267</spage><epage>1292</epage><pages>1267-1292</pages><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Given a measure μ of polynomial growth, we refine a deep result by David and Mattila to construct an atomic martingale filtration of supp ( μ ) which provides the right framework for a dyadic form of nondoubling harmonic analysis. Despite this filtration being highly irregular, its atoms are comparable to balls in the given metric—which in turn are all doubling—and satisfy a weaker but crucial form of regularity. Our dyadic formulation is effective to address three basic questions: A dyadic form of Tolsa’s RBMO space which contains it. Lerner’s domination and A 2 -type bounds for nondoubling measures. A noncommutative form of nonhomogeneous Calderón–Zygmund theory. Our martingale RBMO space preserves the crucial properties of Tolsa’s original definition and reveals its interpolation behavior with the L p scale in the category of Banach spaces, unknown so far. On the other hand, due to some known obstructions for Haar shifts and related concepts over nondoubling measures, our pointwise domination theorem via sparsity naturally deviates from its doubling analogue. In a different direction, matrix-valued harmonic analysis over noncommutative L p spaces has recently produced profound applications. Our analogue for nondoubling measures was expected for quite some time. Finally, we also find a dyadic form of the Calderón–Zygmund decomposition which unifies those by Tolsa and López-Sánchez/Martell/Parcet.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-018-9624-4</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2019-08, Vol.25 (4), p.1267-1292
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2251182859
source SpringerLink (Online service)
subjects Abstract Harmonic Analysis
Approximations and Expansions
Banach spaces
Filtration
Fourier Analysis
Harmonic analysis
Interpolation
Martingales
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Obstructions
Partial Differential Equations
Polynomials
Signal,Image and Speech Processing
title Nondoubling Calderón–Zygmund theory: a dyadic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondoubling%20Calder%C3%B3n%E2%80%93Zygmund%20theory:%20a%20dyadic%20approach&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Conde-Alonso,%20Jos%C3%A9%20M.&rft.date=2019-08-15&rft.volume=25&rft.issue=4&rft.spage=1267&rft.epage=1292&rft.pages=1267-1292&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-018-9624-4&rft_dat=%3Cproquest_cross%3E2251182859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251182859&rft_id=info:pmid/&rfr_iscdi=true