A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module
•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2019-06, Vol.156, p.324-339 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | |
container_start_page | 324 |
container_title | Applied thermal engineering |
container_volume | 156 |
creator | Chen, Siqi Peng, Xiongbin Bao, Nengsheng Garg, Akhil |
description | •Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics.
Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C. |
doi_str_mv | 10.1016/j.applthermaleng.2019.04.089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251070211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431119304624</els_id><sourcerecordid>2251070211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_WIJrgu04L4lLVfGSKnGBs-Xam9ZREqe2U6lc-XFcyoUbpx3tzsxqBqE7SlJKaHHfpnIcu7AF18sOhk3KCK1TwlNS1WdoRqsyS_KCFOcRZ3md8IzSS3TlfUsIZVXJZ-hrgZXtRwdbGLzZA5aD7A7e-Ag0tmMwvfmUwdgBj84q8B431sUjNkOAjZMBNO7MbjI6GtnODBs8dnF7okWR8X3Uq0gKWzP1ydFqLUMAd8C91VMH1-iikZ2Hm985Rx9Pj-_Ll2T19vy6XKwSldVlSBRUlGilK60L0IStm6KpyFrmkpeaSc6zhrG6LGugPCs4y4qyYTRXBQdQTVVnc3R78o1JdhP4IFo7uZjXC8ZySkrCKI2shxNLOeu9g0bEDL10B0GJONYuWvG3dnGsXRAuyM-Tp5McYpK9ASe8MjAo0MaBCkJb8z-jb5BLmAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251070211</pqid></control><display><type>article</type><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</creator><creatorcontrib>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</creatorcontrib><description>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics.
Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.04.089</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Battery thermal management ; Computational fluid dynamics ; Cooling ; Cooling effects ; Cooling systems ; Design optimization ; Energy consumption ; Energy dissipation ; Heat dissipation ; Hypercubes ; Liquid cooling ; Lithium-ion batteries ; Lithium-ion battery ; Modules ; Multi-objective optimization ; Multiple objective analysis ; Optimization ; Overheating ; Parameter sensitivity ; Plates (structural members) ; Rechargeable batteries ; Sensitivity analysis ; Thermal management ; Thermal runaway ; Thermodynamic properties</subject><ispartof>Applied thermal engineering, 2019-06, Vol.156, p.324-339</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</citedby><cites>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2019.04.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Peng, Xiongbin</creatorcontrib><creatorcontrib>Bao, Nengsheng</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><title>Applied thermal engineering</title><description>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics.
Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</description><subject>Batteries</subject><subject>Battery thermal management</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Cooling systems</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Energy dissipation</subject><subject>Heat dissipation</subject><subject>Hypercubes</subject><subject>Liquid cooling</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Modules</subject><subject>Multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Overheating</subject><subject>Parameter sensitivity</subject><subject>Plates (structural members)</subject><subject>Rechargeable batteries</subject><subject>Sensitivity analysis</subject><subject>Thermal management</subject><subject>Thermal runaway</subject><subject>Thermodynamic properties</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_WIJrgu04L4lLVfGSKnGBs-Xam9ZREqe2U6lc-XFcyoUbpx3tzsxqBqE7SlJKaHHfpnIcu7AF18sOhk3KCK1TwlNS1WdoRqsyS_KCFOcRZ3md8IzSS3TlfUsIZVXJZ-hrgZXtRwdbGLzZA5aD7A7e-Ag0tmMwvfmUwdgBj84q8B431sUjNkOAjZMBNO7MbjI6GtnODBs8dnF7okWR8X3Uq0gKWzP1ydFqLUMAd8C91VMH1-iikZ2Hm985Rx9Pj-_Ll2T19vy6XKwSldVlSBRUlGilK60L0IStm6KpyFrmkpeaSc6zhrG6LGugPCs4y4qyYTRXBQdQTVVnc3R78o1JdhP4IFo7uZjXC8ZySkrCKI2shxNLOeu9g0bEDL10B0GJONYuWvG3dnGsXRAuyM-Tp5McYpK9ASe8MjAo0MaBCkJb8z-jb5BLmAw</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Chen, Siqi</creator><creator>Peng, Xiongbin</creator><creator>Bao, Nengsheng</creator><creator>Garg, Akhil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190625</creationdate><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><author>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Battery thermal management</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Cooling systems</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Energy dissipation</topic><topic>Heat dissipation</topic><topic>Hypercubes</topic><topic>Liquid cooling</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Modules</topic><topic>Multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Overheating</topic><topic>Parameter sensitivity</topic><topic>Plates (structural members)</topic><topic>Rechargeable batteries</topic><topic>Sensitivity analysis</topic><topic>Thermal management</topic><topic>Thermal runaway</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Peng, Xiongbin</creatorcontrib><creatorcontrib>Bao, Nengsheng</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Siqi</au><au>Peng, Xiongbin</au><au>Bao, Nengsheng</au><au>Garg, Akhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-06-25</date><risdate>2019</risdate><volume>156</volume><spage>324</spage><epage>339</epage><pages>324-339</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics.
Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.04.089</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2019-06, Vol.156, p.324-339 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_2251070211 |
source | Elsevier ScienceDirect Journals |
subjects | Batteries Battery thermal management Computational fluid dynamics Cooling Cooling effects Cooling systems Design optimization Energy consumption Energy dissipation Heat dissipation Hypercubes Liquid cooling Lithium-ion batteries Lithium-ion battery Modules Multi-objective optimization Multiple objective analysis Optimization Overheating Parameter sensitivity Plates (structural members) Rechargeable batteries Sensitivity analysis Thermal management Thermal runaway Thermodynamic properties |
title | A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20analysis%20and%20optimization%20process%20for%20an%20integrated%20liquid%20cooling%20plate%20for%20a%20prismatic%20lithium-ion%20battery%20module&rft.jtitle=Applied%20thermal%20engineering&rft.au=Chen,%20Siqi&rft.date=2019-06-25&rft.volume=156&rft.spage=324&rft.epage=339&rft.pages=324-339&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.04.089&rft_dat=%3Cproquest_cross%3E2251070211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251070211&rft_id=info:pmid/&rft_els_id=S1359431119304624&rfr_iscdi=true |