A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module

•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2019-06, Vol.156, p.324-339
Hauptverfasser: Chen, Siqi, Peng, Xiongbin, Bao, Nengsheng, Garg, Akhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue
container_start_page 324
container_title Applied thermal engineering
container_volume 156
creator Chen, Siqi
Peng, Xiongbin
Bao, Nengsheng
Garg, Akhil
description •Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.
doi_str_mv 10.1016/j.applthermaleng.2019.04.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251070211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431119304624</els_id><sourcerecordid>2251070211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMI_WIJrgu04L4lLVfGSKnGBs-Xam9ZREqe2U6lc-XFcyoUbpx3tzsxqBqE7SlJKaHHfpnIcu7AF18sOhk3KCK1TwlNS1WdoRqsyS_KCFOcRZ3md8IzSS3TlfUsIZVXJZ-hrgZXtRwdbGLzZA5aD7A7e-Ag0tmMwvfmUwdgBj84q8B431sUjNkOAjZMBNO7MbjI6GtnODBs8dnF7okWR8X3Uq0gKWzP1ydFqLUMAd8C91VMH1-iikZ2Hm985Rx9Pj-_Ll2T19vy6XKwSldVlSBRUlGilK60L0IStm6KpyFrmkpeaSc6zhrG6LGugPCs4y4qyYTRXBQdQTVVnc3R78o1JdhP4IFo7uZjXC8ZySkrCKI2shxNLOeu9g0bEDL10B0GJONYuWvG3dnGsXRAuyM-Tp5McYpK9ASe8MjAo0MaBCkJb8z-jb5BLmAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251070211</pqid></control><display><type>article</type><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</creator><creatorcontrib>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</creatorcontrib><description>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.04.089</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Battery thermal management ; Computational fluid dynamics ; Cooling ; Cooling effects ; Cooling systems ; Design optimization ; Energy consumption ; Energy dissipation ; Heat dissipation ; Hypercubes ; Liquid cooling ; Lithium-ion batteries ; Lithium-ion battery ; Modules ; Multi-objective optimization ; Multiple objective analysis ; Optimization ; Overheating ; Parameter sensitivity ; Plates (structural members) ; Rechargeable batteries ; Sensitivity analysis ; Thermal management ; Thermal runaway ; Thermodynamic properties</subject><ispartof>Applied thermal engineering, 2019-06, Vol.156, p.324-339</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</citedby><cites>FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2019.04.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Peng, Xiongbin</creatorcontrib><creatorcontrib>Bao, Nengsheng</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><title>Applied thermal engineering</title><description>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</description><subject>Batteries</subject><subject>Battery thermal management</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Cooling systems</subject><subject>Design optimization</subject><subject>Energy consumption</subject><subject>Energy dissipation</subject><subject>Heat dissipation</subject><subject>Hypercubes</subject><subject>Liquid cooling</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Modules</subject><subject>Multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Overheating</subject><subject>Parameter sensitivity</subject><subject>Plates (structural members)</subject><subject>Rechargeable batteries</subject><subject>Sensitivity analysis</subject><subject>Thermal management</subject><subject>Thermal runaway</subject><subject>Thermodynamic properties</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMI_WIJrgu04L4lLVfGSKnGBs-Xam9ZREqe2U6lc-XFcyoUbpx3tzsxqBqE7SlJKaHHfpnIcu7AF18sOhk3KCK1TwlNS1WdoRqsyS_KCFOcRZ3md8IzSS3TlfUsIZVXJZ-hrgZXtRwdbGLzZA5aD7A7e-Ag0tmMwvfmUwdgBj84q8B431sUjNkOAjZMBNO7MbjI6GtnODBs8dnF7okWR8X3Uq0gKWzP1ydFqLUMAd8C91VMH1-iikZ2Hm985Rx9Pj-_Ll2T19vy6XKwSldVlSBRUlGilK60L0IStm6KpyFrmkpeaSc6zhrG6LGugPCs4y4qyYTRXBQdQTVVnc3R78o1JdhP4IFo7uZjXC8ZySkrCKI2shxNLOeu9g0bEDL10B0GJONYuWvG3dnGsXRAuyM-Tp5McYpK9ASe8MjAo0MaBCkJb8z-jb5BLmAw</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Chen, Siqi</creator><creator>Peng, Xiongbin</creator><creator>Bao, Nengsheng</creator><creator>Garg, Akhil</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190625</creationdate><title>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</title><author>Chen, Siqi ; Peng, Xiongbin ; Bao, Nengsheng ; Garg, Akhil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-ce810dcd8dd6ed02bf6f80ba5a47d2a443f229779e143642367f215c64eecf893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Battery thermal management</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Cooling systems</topic><topic>Design optimization</topic><topic>Energy consumption</topic><topic>Energy dissipation</topic><topic>Heat dissipation</topic><topic>Hypercubes</topic><topic>Liquid cooling</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Modules</topic><topic>Multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Overheating</topic><topic>Parameter sensitivity</topic><topic>Plates (structural members)</topic><topic>Rechargeable batteries</topic><topic>Sensitivity analysis</topic><topic>Thermal management</topic><topic>Thermal runaway</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Peng, Xiongbin</creatorcontrib><creatorcontrib>Bao, Nengsheng</creatorcontrib><creatorcontrib>Garg, Akhil</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Siqi</au><au>Peng, Xiongbin</au><au>Bao, Nengsheng</au><au>Garg, Akhil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-06-25</date><risdate>2019</risdate><volume>156</volume><spage>324</spage><epage>339</epage><pages>324-339</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Battery heat generation model is analysed with experiments to get thermal parameters.•Temperature standard deviation is analysed in thermodynamics for heat uniformity.•Maximum pressure, which affects running cost, is considered in fluid dynamics. Thermal management of lithium-ion battery modules is essential to avoid thermal issues such as overheating and thermal runaway. Liquid-cooling is an efficient cooling method, and many publications can be found in this area. However, a parametric study on the influence of structural parameters on the cooling effect is still lacking. This article proposes a comprehensive way to quantitively evaluate the cooling effect of a liquid-cooled battery module. Computational fluid dynamics is used to establish the fluid-solid coupled heat dissipation model, using the thermal parameters values from experiments. Parameter combination samples are generated using the Latin Hypercubes method, and the effect of structural parameters on heat dissipation performance is determined using sensitivity analysis. Multi-Objective optimization is then performed to develop a cooling system with lower temperature and lower energy consumption. The optimized design is then verified by heat-dissipation experiments of a battery module set-up. The proposed method can be easily implemented in industrial battery pack manufacturing. The results show that with the same input power, the temperature reduction will be higher, 1.87 °C; and the temperature deviation can also be controlled within a small range, 0.35 °C.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.04.089</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-06, Vol.156, p.324-339
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2251070211
source Elsevier ScienceDirect Journals
subjects Batteries
Battery thermal management
Computational fluid dynamics
Cooling
Cooling effects
Cooling systems
Design optimization
Energy consumption
Energy dissipation
Heat dissipation
Hypercubes
Liquid cooling
Lithium-ion batteries
Lithium-ion battery
Modules
Multi-objective optimization
Multiple objective analysis
Optimization
Overheating
Parameter sensitivity
Plates (structural members)
Rechargeable batteries
Sensitivity analysis
Thermal management
Thermal runaway
Thermodynamic properties
title A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20analysis%20and%20optimization%20process%20for%20an%20integrated%20liquid%20cooling%20plate%20for%20a%20prismatic%20lithium-ion%20battery%20module&rft.jtitle=Applied%20thermal%20engineering&rft.au=Chen,%20Siqi&rft.date=2019-06-25&rft.volume=156&rft.spage=324&rft.epage=339&rft.pages=324-339&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.04.089&rft_dat=%3Cproquest_cross%3E2251070211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251070211&rft_id=info:pmid/&rft_els_id=S1359431119304624&rfr_iscdi=true