Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network

In this work we present a method to train a plane-aware convolutional neural network for dense depth and surface normal estimation as well as plane boundaries from a single indoor \(360^\circ\) image. Using our proposed loss function, our network outperforms existing methods for single-view, indoor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Eder, Marc, Moulon, Pierre, Li, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eder, Marc
Moulon, Pierre
Li, Guan
description In this work we present a method to train a plane-aware convolutional neural network for dense depth and surface normal estimation as well as plane boundaries from a single indoor \(360^\circ\) image. Using our proposed loss function, our network outperforms existing methods for single-view, indoor, omnidirectional depth estimation and provides an initial benchmark for surface normal prediction from \(360^\circ\) images. Our improvements are due to the use of a novel plane-aware loss that leverages principal curvature as an indicator of planar boundaries. We also show that including geodesic coordinate maps as network priors provides a significant boost in surface normal prediction accuracy. Finally, we demonstrate how we can combine our network's outputs to generate high quality 3D "pop-up" models of indoor scenes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2250839799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250839799</sourcerecordid><originalsourceid>FETCH-proquest_journals_22508397993</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwDsQTa1snxQu6SBH3EmrE1pITc6Gvr4MP4PQP3z9iCUq54MUSccJS7zshBK5yzDKZsE2lDEFFNlq_hrO5EzmQe7jqhowPLjahJQNDG56goOqV0Xw7KKfhosNA7jVj44fqvU5_nbL58XDbnbh19I7ah7qj6MyXasRMFLLMy1L-d30Azsc4WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250839799</pqid></control><display><type>article</type><title>Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network</title><source>Free E- Journals</source><creator>Eder, Marc ; Moulon, Pierre ; Li, Guan</creator><creatorcontrib>Eder, Marc ; Moulon, Pierre ; Li, Guan</creatorcontrib><description>In this work we present a method to train a plane-aware convolutional neural network for dense depth and surface normal estimation as well as plane boundaries from a single indoor \(360^\circ\) image. Using our proposed loss function, our network outperforms existing methods for single-view, indoor, omnidirectional depth estimation and provides an initial benchmark for surface normal prediction from \(360^\circ\) images. Our improvements are due to the use of a novel plane-aware loss that leverages principal curvature as an indicator of planar boundaries. We also show that including geodesic coordinate maps as network priors provides a significant boost in surface normal prediction accuracy. Finally, we demonstrate how we can combine our network's outputs to generate high quality 3D "pop-up" models of indoor scenes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Boundaries ; Curvature ; Image reconstruction ; Three dimensional models</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Eder, Marc</creatorcontrib><creatorcontrib>Moulon, Pierre</creatorcontrib><creatorcontrib>Li, Guan</creatorcontrib><title>Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network</title><title>arXiv.org</title><description>In this work we present a method to train a plane-aware convolutional neural network for dense depth and surface normal estimation as well as plane boundaries from a single indoor \(360^\circ\) image. Using our proposed loss function, our network outperforms existing methods for single-view, indoor, omnidirectional depth estimation and provides an initial benchmark for surface normal prediction from \(360^\circ\) images. Our improvements are due to the use of a novel plane-aware loss that leverages principal curvature as an indicator of planar boundaries. We also show that including geodesic coordinate maps as network priors provides a significant boost in surface normal prediction accuracy. Finally, we demonstrate how we can combine our network's outputs to generate high quality 3D "pop-up" models of indoor scenes.</description><subject>Artificial neural networks</subject><subject>Boundaries</subject><subject>Curvature</subject><subject>Image reconstruction</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwDsQTa1snxQu6SBH3EmrE1pITc6Gvr4MP4PQP3z9iCUq54MUSccJS7zshBK5yzDKZsE2lDEFFNlq_hrO5EzmQe7jqhowPLjahJQNDG56goOqV0Xw7KKfhosNA7jVj44fqvU5_nbL58XDbnbh19I7ah7qj6MyXasRMFLLMy1L-d30Azsc4WA</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Eder, Marc</creator><creator>Moulon, Pierre</creator><creator>Li, Guan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200224</creationdate><title>Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network</title><author>Eder, Marc ; Moulon, Pierre ; Li, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22508397993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Boundaries</topic><topic>Curvature</topic><topic>Image reconstruction</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Eder, Marc</creatorcontrib><creatorcontrib>Moulon, Pierre</creatorcontrib><creatorcontrib>Li, Guan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eder, Marc</au><au>Moulon, Pierre</au><au>Li, Guan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network</atitle><jtitle>arXiv.org</jtitle><date>2020-02-24</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this work we present a method to train a plane-aware convolutional neural network for dense depth and surface normal estimation as well as plane boundaries from a single indoor \(360^\circ\) image. Using our proposed loss function, our network outperforms existing methods for single-view, indoor, omnidirectional depth estimation and provides an initial benchmark for surface normal prediction from \(360^\circ\) images. Our improvements are due to the use of a novel plane-aware loss that leverages principal curvature as an indicator of planar boundaries. We also show that including geodesic coordinate maps as network priors provides a significant boost in surface normal prediction accuracy. Finally, we demonstrate how we can combine our network's outputs to generate high quality 3D "pop-up" models of indoor scenes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2250839799
source Free E- Journals
subjects Artificial neural networks
Boundaries
Curvature
Image reconstruction
Three dimensional models
title Pano Popups: Indoor 3D Reconstruction with a Plane-Aware Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pano%20Popups:%20Indoor%203D%20Reconstruction%20with%20a%20Plane-Aware%20Network&rft.jtitle=arXiv.org&rft.au=Eder,%20Marc&rft.date=2020-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2250839799%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250839799&rft_id=info:pmid/&rfr_iscdi=true