Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy

The kinetics and mechanism of fatigue failure of the VT6 titanium alloy (composition, wt %: 5.95 V, 5.01 Al, 89.05 Ti) in the initial (hot-rolled) coarse-grained (CG) state and after equal-channel angular pressing (ECAP) in the ultrafine-grained state (UFG) are investigated. ECAP is performed using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of non-ferrous metals 2019-05, Vol.60 (3), p.253-258
Hauptverfasser: Klevtsov, G. V., Valiev, R. Z., Semenova, I. P., Klevtsova, N. A., Danilov, V. A., Linderov, M. L., Zasypkin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 3
container_start_page 253
container_title Russian journal of non-ferrous metals
container_volume 60
creator Klevtsov, G. V.
Valiev, R. Z.
Semenova, I. P.
Klevtsova, N. A.
Danilov, V. A.
Linderov, M. L.
Zasypkin, S. V.
description The kinetics and mechanism of fatigue failure of the VT6 titanium alloy (composition, wt %: 5.95 V, 5.01 Al, 89.05 Ti) in the initial (hot-rolled) coarse-grained (CG) state and after equal-channel angular pressing (ECAP) in the ultrafine-grained state (UFG) are investigated. ECAP is performed using billets of the mentioned alloy 20 mm in diameter and 100 mm in length preliminarily subjected to homogenizing annealing. Then, quenching in water is performed from 960°C with holding for 1 h, tempering at 675°C for 4 h, and ECAP at 650°C (route B с , φ = 120°, number of passes n = 6). The fine alloy structure after ECAP is investigated by transmission electron microscopy at an accelerating voltage of 200 kV. To determine alloy hardness, a Time Group TH 300 hardness meter is used. Static tensile tests are performed for round samples 5 mm in diameter using a Tinius Olsen H50KT universal testing machine. The extension velocity is 5 mm/min. Fatigue tests are performed using prismatic samples 10 mm in thickness at 20°C according to the three-point bending test using an Instron 8802 installation. It is shown that, under the same loading conditions, the fatigue life of alloy samples (the number of cycles before failure) in the initial CG state is higher than that of the alloy samples in the UFG state. It is shown that the number of cycles before fatigue-crack nucleation was at a level of 19–23% of the total sample longevity, regardless the alloy state. The straight-linear segment in kinetic diagrams of the alloy fatigue failure is approximated by the Paris equation. It is revealed that the propagation rate of the fatigue crack in the alloy with an UFG structure is somewhat higher than in the alloy with a CG structure. The microrelief of fatigue cleavages of the VT6 alloy both in the CG and UFG state can be characterized as scaly with fatigue grooves on the scale surface. A low-relief region 4–6 μm in length can be observed in the failure region of the samples with an UFG structure. The microrelief of the rupture region is pit, irrespective of the alloy state.
doi_str_mv 10.3103/S1067821219030088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250628889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250628889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5bb8775caeabe1e4f4de8c0ce0e947a0d9094ee13b8907c10bb5d60ac9e434363</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjH-bDHqqKlooihLWKLHOfSpkqdYjtD_z2OisSAmN7dvY-THiH3DB45A_60YpDlImYxk8ABhLggIyZ5EskcPi_DHOho4K_JjXN7gDSVqRyRdmHqtkejkXY13bTeqroxGM2tClDRlbe99r0NtKF-h_Q1nH2jHVWmojPlm22PAZt20Lyh3inTuMMQ9rHO6LrxYe8PdNK23emWXNWqdXj3g2OymT2vpy_R8n2-mE6WkeYs81FaliLPU61QlcgwqZMKhQaNgDLJFVQSZILIeCkk5JpBWaZVBkpLTHjCMz4mD-fco-2-enS-2He9NeFlEccpZLEQQgYVO6u07ZyzWBdH2xyUPRUMiqHU4k-pwROfPS5ozRbtb_L_pm-gKHlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250628889</pqid></control><display><type>article</type><title>Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy</title><source>Springer Journals</source><creator>Klevtsov, G. V. ; Valiev, R. Z. ; Semenova, I. P. ; Klevtsova, N. A. ; Danilov, V. A. ; Linderov, M. L. ; Zasypkin, S. V.</creator><creatorcontrib>Klevtsov, G. V. ; Valiev, R. Z. ; Semenova, I. P. ; Klevtsova, N. A. ; Danilov, V. A. ; Linderov, M. L. ; Zasypkin, S. V.</creatorcontrib><description>The kinetics and mechanism of fatigue failure of the VT6 titanium alloy (composition, wt %: 5.95 V, 5.01 Al, 89.05 Ti) in the initial (hot-rolled) coarse-grained (CG) state and after equal-channel angular pressing (ECAP) in the ultrafine-grained state (UFG) are investigated. ECAP is performed using billets of the mentioned alloy 20 mm in diameter and 100 mm in length preliminarily subjected to homogenizing annealing. Then, quenching in water is performed from 960°C with holding for 1 h, tempering at 675°C for 4 h, and ECAP at 650°C (route B с , φ = 120°, number of passes n = 6). The fine alloy structure after ECAP is investigated by transmission electron microscopy at an accelerating voltage of 200 kV. To determine alloy hardness, a Time Group TH 300 hardness meter is used. Static tensile tests are performed for round samples 5 mm in diameter using a Tinius Olsen H50KT universal testing machine. The extension velocity is 5 mm/min. Fatigue tests are performed using prismatic samples 10 mm in thickness at 20°C according to the three-point bending test using an Instron 8802 installation. It is shown that, under the same loading conditions, the fatigue life of alloy samples (the number of cycles before failure) in the initial CG state is higher than that of the alloy samples in the UFG state. It is shown that the number of cycles before fatigue-crack nucleation was at a level of 19–23% of the total sample longevity, regardless the alloy state. The straight-linear segment in kinetic diagrams of the alloy fatigue failure is approximated by the Paris equation. It is revealed that the propagation rate of the fatigue crack in the alloy with an UFG structure is somewhat higher than in the alloy with a CG structure. The microrelief of fatigue cleavages of the VT6 alloy both in the CG and UFG state can be characterized as scaly with fatigue grooves on the scale surface. A low-relief region 4–6 μm in length can be observed in the failure region of the samples with an UFG structure. The microrelief of the rupture region is pit, irrespective of the alloy state.</description><identifier>ISSN: 1067-8212</identifier><identifier>EISSN: 1934-970X</identifier><identifier>DOI: 10.3103/S1067821219030088</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Billets ; Chemistry and Materials Science ; Crack initiation ; Crack propagation ; Equal channel angular pressing ; Failure mechanisms ; Fatigue failure ; Fatigue life ; Fatigue tests ; Fracture mechanics ; Grooves ; Hot rolling ; Materials Science ; Metal fatigue ; Metallic Materials ; Nucleation ; Physical Metallurgy and Heat Treatment ; Tensile tests ; Titanium alloys ; Titanium base alloys ; Transmission electron microscopy ; Ultrafines</subject><ispartof>Russian journal of non-ferrous metals, 2019-05, Vol.60 (3), p.253-258</ispartof><rights>Allerton Press, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5bb8775caeabe1e4f4de8c0ce0e947a0d9094ee13b8907c10bb5d60ac9e434363</citedby><cites>FETCH-LOGICAL-c316t-5bb8775caeabe1e4f4de8c0ce0e947a0d9094ee13b8907c10bb5d60ac9e434363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1067821219030088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1067821219030088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Klevtsov, G. V.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Semenova, I. P.</creatorcontrib><creatorcontrib>Klevtsova, N. A.</creatorcontrib><creatorcontrib>Danilov, V. A.</creatorcontrib><creatorcontrib>Linderov, M. L.</creatorcontrib><creatorcontrib>Zasypkin, S. V.</creatorcontrib><title>Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy</title><title>Russian journal of non-ferrous metals</title><addtitle>Russ. J. Non-ferrous Metals</addtitle><description>The kinetics and mechanism of fatigue failure of the VT6 titanium alloy (composition, wt %: 5.95 V, 5.01 Al, 89.05 Ti) in the initial (hot-rolled) coarse-grained (CG) state and after equal-channel angular pressing (ECAP) in the ultrafine-grained state (UFG) are investigated. ECAP is performed using billets of the mentioned alloy 20 mm in diameter and 100 mm in length preliminarily subjected to homogenizing annealing. Then, quenching in water is performed from 960°C with holding for 1 h, tempering at 675°C for 4 h, and ECAP at 650°C (route B с , φ = 120°, number of passes n = 6). The fine alloy structure after ECAP is investigated by transmission electron microscopy at an accelerating voltage of 200 kV. To determine alloy hardness, a Time Group TH 300 hardness meter is used. Static tensile tests are performed for round samples 5 mm in diameter using a Tinius Olsen H50KT universal testing machine. The extension velocity is 5 mm/min. Fatigue tests are performed using prismatic samples 10 mm in thickness at 20°C according to the three-point bending test using an Instron 8802 installation. It is shown that, under the same loading conditions, the fatigue life of alloy samples (the number of cycles before failure) in the initial CG state is higher than that of the alloy samples in the UFG state. It is shown that the number of cycles before fatigue-crack nucleation was at a level of 19–23% of the total sample longevity, regardless the alloy state. The straight-linear segment in kinetic diagrams of the alloy fatigue failure is approximated by the Paris equation. It is revealed that the propagation rate of the fatigue crack in the alloy with an UFG structure is somewhat higher than in the alloy with a CG structure. The microrelief of fatigue cleavages of the VT6 alloy both in the CG and UFG state can be characterized as scaly with fatigue grooves on the scale surface. A low-relief region 4–6 μm in length can be observed in the failure region of the samples with an UFG structure. The microrelief of the rupture region is pit, irrespective of the alloy state.</description><subject>Billets</subject><subject>Chemistry and Materials Science</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Equal channel angular pressing</subject><subject>Failure mechanisms</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Grooves</subject><subject>Hot rolling</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Metallic Materials</subject><subject>Nucleation</subject><subject>Physical Metallurgy and Heat Treatment</subject><subject>Tensile tests</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transmission electron microscopy</subject><subject>Ultrafines</subject><issn>1067-8212</issn><issn>1934-970X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjH-bDHqqKlooihLWKLHOfSpkqdYjtD_z2OisSAmN7dvY-THiH3DB45A_60YpDlImYxk8ABhLggIyZ5EskcPi_DHOho4K_JjXN7gDSVqRyRdmHqtkejkXY13bTeqroxGM2tClDRlbe99r0NtKF-h_Q1nH2jHVWmojPlm22PAZt20Lyh3inTuMMQ9rHO6LrxYe8PdNK23emWXNWqdXj3g2OymT2vpy_R8n2-mE6WkeYs81FaliLPU61QlcgwqZMKhQaNgDLJFVQSZILIeCkk5JpBWaZVBkpLTHjCMz4mD-fco-2-enS-2He9NeFlEccpZLEQQgYVO6u07ZyzWBdH2xyUPRUMiqHU4k-pwROfPS5ozRbtb_L_pm-gKHlU</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Klevtsov, G. V.</creator><creator>Valiev, R. Z.</creator><creator>Semenova, I. P.</creator><creator>Klevtsova, N. A.</creator><creator>Danilov, V. A.</creator><creator>Linderov, M. L.</creator><creator>Zasypkin, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190501</creationdate><title>Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy</title><author>Klevtsov, G. V. ; Valiev, R. Z. ; Semenova, I. P. ; Klevtsova, N. A. ; Danilov, V. A. ; Linderov, M. L. ; Zasypkin, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5bb8775caeabe1e4f4de8c0ce0e947a0d9094ee13b8907c10bb5d60ac9e434363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Billets</topic><topic>Chemistry and Materials Science</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Equal channel angular pressing</topic><topic>Failure mechanisms</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Grooves</topic><topic>Hot rolling</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Metallic Materials</topic><topic>Nucleation</topic><topic>Physical Metallurgy and Heat Treatment</topic><topic>Tensile tests</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transmission electron microscopy</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klevtsov, G. V.</creatorcontrib><creatorcontrib>Valiev, R. Z.</creatorcontrib><creatorcontrib>Semenova, I. P.</creatorcontrib><creatorcontrib>Klevtsova, N. A.</creatorcontrib><creatorcontrib>Danilov, V. A.</creatorcontrib><creatorcontrib>Linderov, M. L.</creatorcontrib><creatorcontrib>Zasypkin, S. V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Russian journal of non-ferrous metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klevtsov, G. V.</au><au>Valiev, R. Z.</au><au>Semenova, I. P.</au><au>Klevtsova, N. A.</au><au>Danilov, V. A.</au><au>Linderov, M. L.</au><au>Zasypkin, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy</atitle><jtitle>Russian journal of non-ferrous metals</jtitle><stitle>Russ. J. Non-ferrous Metals</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>60</volume><issue>3</issue><spage>253</spage><epage>258</epage><pages>253-258</pages><issn>1067-8212</issn><eissn>1934-970X</eissn><abstract>The kinetics and mechanism of fatigue failure of the VT6 titanium alloy (composition, wt %: 5.95 V, 5.01 Al, 89.05 Ti) in the initial (hot-rolled) coarse-grained (CG) state and after equal-channel angular pressing (ECAP) in the ultrafine-grained state (UFG) are investigated. ECAP is performed using billets of the mentioned alloy 20 mm in diameter and 100 mm in length preliminarily subjected to homogenizing annealing. Then, quenching in water is performed from 960°C with holding for 1 h, tempering at 675°C for 4 h, and ECAP at 650°C (route B с , φ = 120°, number of passes n = 6). The fine alloy structure after ECAP is investigated by transmission electron microscopy at an accelerating voltage of 200 kV. To determine alloy hardness, a Time Group TH 300 hardness meter is used. Static tensile tests are performed for round samples 5 mm in diameter using a Tinius Olsen H50KT universal testing machine. The extension velocity is 5 mm/min. Fatigue tests are performed using prismatic samples 10 mm in thickness at 20°C according to the three-point bending test using an Instron 8802 installation. It is shown that, under the same loading conditions, the fatigue life of alloy samples (the number of cycles before failure) in the initial CG state is higher than that of the alloy samples in the UFG state. It is shown that the number of cycles before fatigue-crack nucleation was at a level of 19–23% of the total sample longevity, regardless the alloy state. The straight-linear segment in kinetic diagrams of the alloy fatigue failure is approximated by the Paris equation. It is revealed that the propagation rate of the fatigue crack in the alloy with an UFG structure is somewhat higher than in the alloy with a CG structure. The microrelief of fatigue cleavages of the VT6 alloy both in the CG and UFG state can be characterized as scaly with fatigue grooves on the scale surface. A low-relief region 4–6 μm in length can be observed in the failure region of the samples with an UFG structure. The microrelief of the rupture region is pit, irrespective of the alloy state.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1067821219030088</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1067-8212
ispartof Russian journal of non-ferrous metals, 2019-05, Vol.60 (3), p.253-258
issn 1067-8212
1934-970X
language eng
recordid cdi_proquest_journals_2250628889
source Springer Journals
subjects Billets
Chemistry and Materials Science
Crack initiation
Crack propagation
Equal channel angular pressing
Failure mechanisms
Fatigue failure
Fatigue life
Fatigue tests
Fracture mechanics
Grooves
Hot rolling
Materials Science
Metal fatigue
Metallic Materials
Nucleation
Physical Metallurgy and Heat Treatment
Tensile tests
Titanium alloys
Titanium base alloys
Transmission electron microscopy
Ultrafines
title Influence of Ultrafine-Grained Structure on the Kinetics and Fatigue Failure Mechanism of VT6 Titanium Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Ultrafine-Grained%20Structure%20on%20the%20Kinetics%20and%20Fatigue%20Failure%20Mechanism%20of%20VT6%20Titanium%20Alloy&rft.jtitle=Russian%20journal%20of%20non-ferrous%20metals&rft.au=Klevtsov,%20G.%20V.&rft.date=2019-05-01&rft.volume=60&rft.issue=3&rft.spage=253&rft.epage=258&rft.pages=253-258&rft.issn=1067-8212&rft.eissn=1934-970X&rft_id=info:doi/10.3103/S1067821219030088&rft_dat=%3Cproquest_cross%3E2250628889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250628889&rft_id=info:pmid/&rfr_iscdi=true