A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data
Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random...
Gespeichert in:
Veröffentlicht in: | Kybernetes 2014-09, Vol.43 (8), p.1150-1164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 8 |
container_start_page | 1150 |
container_title | Kybernetes |
container_volume | 43 |
creator | Fergani, Belkacem Abidine, Bilal M'hamed Oussalah, Mourad Fergani, Lamya |
description | Purpose
The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose.
Design/methodology/approach
In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem.
Findings
The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors.
Originality/value
Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure. |
doi_str_mv | 10.1108/K-07-2014-0138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_2250607991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250607991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoOkm15wFvfTidCTZknUMoV8k0EsOvYmxPN4o2NZWkrfsof-93mwP_YCeZhied3jhYexKwLUQ0L67q8BUEkRdgVDtC3YOSrdVbeXXl7_tr9jrnJ8AhNQSztmPGz7Td-5HzDkMwWMJcea5JCy0PfAhJv64TDhz9CXsQznwRD5u5_DMLTnMW-5jLjzTnNfjnnhedruYCt-TL2t8Qv8YZsrPv8LU4Yizp573WPCCnQ04Zrr8NTfs4cP7h9tP1f2Xj59vb-4rr7QuVS2VMT0RYGc9Dr5psTZWNNpQbUCrRneiVmg7rZXRpsUeeq-VkFZ1Bq3asLent7sUvy2Ui5tC9jSuTSgu2Ym2aZRtQOoVffMX-hSXNK_lnJQNaDDWiv9RQjfQtvZYa8OuT5RPMedEg9ulMGE6OAHuqMzdOTDuqMwdla2B6hSgiRKO_b_8H4rVT3p9lzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650889706</pqid></control><display><type>article</type><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><source>Emerald Journals</source><creator>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya</creator><contributor>Mourad Oussalah and Professor Ali Hessami, Dr ; Dr Mourad Oussalah and Professor Ali Hessami</contributor><creatorcontrib>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya ; Mourad Oussalah and Professor Ali Hessami, Dr ; Dr Mourad Oussalah and Professor Ali Hessami</creatorcontrib><description>Purpose
The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose.
Design/methodology/approach
In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem.
Findings
The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors.
Originality/value
Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/K-07-2014-0138</identifier><identifier>CODEN: KBNTA3</identifier><language>eng</language><publisher>London: Kybernetes</publisher><subject>Accuracy ; Activities of daily living ; Algorithms ; Artificial intelligence ; Classification ; Computer simulation ; Conditional random fields ; Costs ; Data processing ; Datasets ; Experiments ; Houses ; Human activity recognition ; Machine learning ; Markov chains ; Markov models ; Mathematical models ; Moving object recognition ; Older people ; Order parameters ; Performance measurement ; Probabilistic models ; Recall ; Sensors ; Smart buildings ; Strategy ; Support vector machines ; Tuning</subject><ispartof>Kybernetes, 2014-09, Vol.43 (8), p.1150-1164</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</citedby><cites>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/K-07-2014-0138/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52688</link.rule.ids></links><search><contributor>Mourad Oussalah and Professor Ali Hessami, Dr</contributor><contributor>Dr Mourad Oussalah and Professor Ali Hessami</contributor><creatorcontrib>Fergani, Belkacem</creatorcontrib><creatorcontrib>Abidine, Bilal M'hamed</creatorcontrib><creatorcontrib>Oussalah, Mourad</creatorcontrib><creatorcontrib>Fergani, Lamya</creatorcontrib><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><title>Kybernetes</title><description>Purpose
The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose.
Design/methodology/approach
In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem.
Findings
The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors.
Originality/value
Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</description><subject>Accuracy</subject><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Conditional random fields</subject><subject>Costs</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Houses</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Markov models</subject><subject>Mathematical models</subject><subject>Moving object recognition</subject><subject>Older people</subject><subject>Order parameters</subject><subject>Performance measurement</subject><subject>Probabilistic models</subject><subject>Recall</subject><subject>Sensors</subject><subject>Smart buildings</subject><subject>Strategy</subject><subject>Support vector machines</subject><subject>Tuning</subject><issn>0368-492X</issn><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1r3DAQhkVpoOkm15wFvfTidCTZknUMoV8k0EsOvYmxPN4o2NZWkrfsof-93mwP_YCeZhied3jhYexKwLUQ0L67q8BUEkRdgVDtC3YOSrdVbeXXl7_tr9jrnJ8AhNQSztmPGz7Td-5HzDkMwWMJcea5JCy0PfAhJv64TDhz9CXsQznwRD5u5_DMLTnMW-5jLjzTnNfjnnhedruYCt-TL2t8Qv8YZsrPv8LU4Yizp573WPCCnQ04Zrr8NTfs4cP7h9tP1f2Xj59vb-4rr7QuVS2VMT0RYGc9Dr5psTZWNNpQbUCrRneiVmg7rZXRpsUeeq-VkFZ1Bq3asLent7sUvy2Ui5tC9jSuTSgu2Ym2aZRtQOoVffMX-hSXNK_lnJQNaDDWiv9RQjfQtvZYa8OuT5RPMedEg9ulMGE6OAHuqMzdOTDuqMwdla2B6hSgiRKO_b_8H4rVT3p9lzc</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Fergani, Belkacem</creator><creator>Abidine, Bilal M'hamed</creator><creator>Oussalah, Mourad</creator><creator>Fergani, Lamya</creator><general>Kybernetes</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140915</creationdate><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><author>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Conditional random fields</topic><topic>Costs</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Houses</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Markov models</topic><topic>Mathematical models</topic><topic>Moving object recognition</topic><topic>Older people</topic><topic>Order parameters</topic><topic>Performance measurement</topic><topic>Probabilistic models</topic><topic>Recall</topic><topic>Sensors</topic><topic>Smart buildings</topic><topic>Strategy</topic><topic>Support vector machines</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fergani, Belkacem</creatorcontrib><creatorcontrib>Abidine, Bilal M'hamed</creatorcontrib><creatorcontrib>Oussalah, Mourad</creatorcontrib><creatorcontrib>Fergani, Lamya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fergani, Belkacem</au><au>Abidine, Bilal M'hamed</au><au>Oussalah, Mourad</au><au>Fergani, Lamya</au><au>Mourad Oussalah and Professor Ali Hessami, Dr</au><au>Dr Mourad Oussalah and Professor Ali Hessami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</atitle><jtitle>Kybernetes</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>43</volume><issue>8</issue><spage>1150</spage><epage>1164</epage><pages>1150-1164</pages><issn>0368-492X</issn><eissn>0368-492X</eissn><eissn>1758-7883</eissn><coden>KBNTA3</coden><abstract>Purpose
The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose.
Design/methodology/approach
In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem.
Findings
The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors.
Originality/value
Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</abstract><cop>London</cop><pub>Kybernetes</pub><doi>10.1108/K-07-2014-0138</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0368-492X |
ispartof | Kybernetes, 2014-09, Vol.43 (8), p.1150-1164 |
issn | 0368-492X 0368-492X 1758-7883 |
language | eng |
recordid | cdi_proquest_journals_2250607991 |
source | Emerald Journals |
subjects | Accuracy Activities of daily living Algorithms Artificial intelligence Classification Computer simulation Conditional random fields Costs Data processing Datasets Experiments Houses Human activity recognition Machine learning Markov chains Markov models Mathematical models Moving object recognition Older people Order parameters Performance measurement Probabilistic models Recall Sensors Smart buildings Strategy Support vector machines Tuning |
title | A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20classification%20strategy%20for%20human%20activity%20recognition%20using%20cost%20sensitive%20support%20vector%20machines%20for%20imbalanced%20data&rft.jtitle=Kybernetes&rft.au=Fergani,%20Belkacem&rft.date=2014-09-15&rft.volume=43&rft.issue=8&rft.spage=1150&rft.epage=1164&rft.pages=1150-1164&rft.issn=0368-492X&rft.eissn=0368-492X&rft.coden=KBNTA3&rft_id=info:doi/10.1108/K-07-2014-0138&rft_dat=%3Cproquest_emera%3E2250607991%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650889706&rft_id=info:pmid/&rfr_iscdi=true |