A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data

Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kybernetes 2014-09, Vol.43 (8), p.1150-1164
Hauptverfasser: Fergani, Belkacem, Abidine, Bilal M'hamed, Oussalah, Mourad, Fergani, Lamya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 8
container_start_page 1150
container_title Kybernetes
container_volume 43
creator Fergani, Belkacem
Abidine, Bilal M'hamed
Oussalah, Mourad
Fergani, Lamya
description Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. Design/methodology/approach In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem. Findings The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors. Originality/value Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.
doi_str_mv 10.1108/K-07-2014-0138
format Article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_2250607991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250607991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpoOkm15wFvfTidCTZknUMoV8k0EsOvYmxPN4o2NZWkrfsof-93mwP_YCeZhied3jhYexKwLUQ0L67q8BUEkRdgVDtC3YOSrdVbeXXl7_tr9jrnJ8AhNQSztmPGz7Td-5HzDkMwWMJcea5JCy0PfAhJv64TDhz9CXsQznwRD5u5_DMLTnMW-5jLjzTnNfjnnhedruYCt-TL2t8Qv8YZsrPv8LU4Yizp573WPCCnQ04Zrr8NTfs4cP7h9tP1f2Xj59vb-4rr7QuVS2VMT0RYGc9Dr5psTZWNNpQbUCrRneiVmg7rZXRpsUeeq-VkFZ1Bq3asLent7sUvy2Ui5tC9jSuTSgu2Ym2aZRtQOoVffMX-hSXNK_lnJQNaDDWiv9RQjfQtvZYa8OuT5RPMedEg9ulMGE6OAHuqMzdOTDuqMwdla2B6hSgiRKO_b_8H4rVT3p9lzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650889706</pqid></control><display><type>article</type><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><source>Emerald Journals</source><creator>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya</creator><contributor>Mourad Oussalah and Professor Ali Hessami, Dr ; Dr Mourad Oussalah and Professor Ali Hessami</contributor><creatorcontrib>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya ; Mourad Oussalah and Professor Ali Hessami, Dr ; Dr Mourad Oussalah and Professor Ali Hessami</creatorcontrib><description>Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. Design/methodology/approach In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem. Findings The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors. Originality/value Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/K-07-2014-0138</identifier><identifier>CODEN: KBNTA3</identifier><language>eng</language><publisher>London: Kybernetes</publisher><subject>Accuracy ; Activities of daily living ; Algorithms ; Artificial intelligence ; Classification ; Computer simulation ; Conditional random fields ; Costs ; Data processing ; Datasets ; Experiments ; Houses ; Human activity recognition ; Machine learning ; Markov chains ; Markov models ; Mathematical models ; Moving object recognition ; Older people ; Order parameters ; Performance measurement ; Probabilistic models ; Recall ; Sensors ; Smart buildings ; Strategy ; Support vector machines ; Tuning</subject><ispartof>Kybernetes, 2014-09, Vol.43 (8), p.1150-1164</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Emerald Group Publishing Limited 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</citedby><cites>FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/K-07-2014-0138/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52688</link.rule.ids></links><search><contributor>Mourad Oussalah and Professor Ali Hessami, Dr</contributor><contributor>Dr Mourad Oussalah and Professor Ali Hessami</contributor><creatorcontrib>Fergani, Belkacem</creatorcontrib><creatorcontrib>Abidine, Bilal M'hamed</creatorcontrib><creatorcontrib>Oussalah, Mourad</creatorcontrib><creatorcontrib>Fergani, Lamya</creatorcontrib><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><title>Kybernetes</title><description>Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. Design/methodology/approach In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem. Findings The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors. Originality/value Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</description><subject>Accuracy</subject><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Conditional random fields</subject><subject>Costs</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Houses</subject><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Markov models</subject><subject>Mathematical models</subject><subject>Moving object recognition</subject><subject>Older people</subject><subject>Order parameters</subject><subject>Performance measurement</subject><subject>Probabilistic models</subject><subject>Recall</subject><subject>Sensors</subject><subject>Smart buildings</subject><subject>Strategy</subject><subject>Support vector machines</subject><subject>Tuning</subject><issn>0368-492X</issn><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1r3DAQhkVpoOkm15wFvfTidCTZknUMoV8k0EsOvYmxPN4o2NZWkrfsof-93mwP_YCeZhied3jhYexKwLUQ0L67q8BUEkRdgVDtC3YOSrdVbeXXl7_tr9jrnJ8AhNQSztmPGz7Td-5HzDkMwWMJcea5JCy0PfAhJv64TDhz9CXsQznwRD5u5_DMLTnMW-5jLjzTnNfjnnhedruYCt-TL2t8Qv8YZsrPv8LU4Yizp573WPCCnQ04Zrr8NTfs4cP7h9tP1f2Xj59vb-4rr7QuVS2VMT0RYGc9Dr5psTZWNNpQbUCrRneiVmg7rZXRpsUeeq-VkFZ1Bq3asLent7sUvy2Ui5tC9jSuTSgu2Ym2aZRtQOoVffMX-hSXNK_lnJQNaDDWiv9RQjfQtvZYa8OuT5RPMedEg9ulMGE6OAHuqMzdOTDuqMwdla2B6hSgiRKO_b_8H4rVT3p9lzc</recordid><startdate>20140915</startdate><enddate>20140915</enddate><creator>Fergani, Belkacem</creator><creator>Abidine, Bilal M'hamed</creator><creator>Oussalah, Mourad</creator><creator>Fergani, Lamya</creator><general>Kybernetes</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20140915</creationdate><title>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</title><author>Fergani, Belkacem ; Abidine, Bilal M'hamed ; Oussalah, Mourad ; Fergani, Lamya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-42377dee0ab9cafc58a4791567e4706356b143a9b6637678ad0dc631293b7a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Conditional random fields</topic><topic>Costs</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Houses</topic><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Markov models</topic><topic>Mathematical models</topic><topic>Moving object recognition</topic><topic>Older people</topic><topic>Order parameters</topic><topic>Performance measurement</topic><topic>Probabilistic models</topic><topic>Recall</topic><topic>Sensors</topic><topic>Smart buildings</topic><topic>Strategy</topic><topic>Support vector machines</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fergani, Belkacem</creatorcontrib><creatorcontrib>Abidine, Bilal M'hamed</creatorcontrib><creatorcontrib>Oussalah, Mourad</creatorcontrib><creatorcontrib>Fergani, Lamya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fergani, Belkacem</au><au>Abidine, Bilal M'hamed</au><au>Oussalah, Mourad</au><au>Fergani, Lamya</au><au>Mourad Oussalah and Professor Ali Hessami, Dr</au><au>Dr Mourad Oussalah and Professor Ali Hessami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data</atitle><jtitle>Kybernetes</jtitle><date>2014-09-15</date><risdate>2014</risdate><volume>43</volume><issue>8</issue><spage>1150</spage><epage>1164</epage><pages>1150-1164</pages><issn>0368-492X</issn><eissn>0368-492X</eissn><eissn>1758-7883</eissn><coden>KBNTA3</coden><abstract>Purpose The task of identifying activity classes from sensor information in smart home is very challenging because of the imbalanced nature of such dataset where some activities occur more frequently than others. Typically probabilistic models such as Hidden Markov Model (HMM) and Conditional Random Fields (CRF) are known as commonly employed for such purpose. Design/methodology/approach In this work, we propose a robust strategy combining the Synthetic Minority Over-sampling Technique (Smote) with Cost Sensitive Support Vector Machines (CS-SVM) with an adaptive tuning of cost parameter in order to handle imbalanced data problem. Findings The results have demonstrated the usefulness of the approach through comparison with state of art of approaches including Hidden Markov Model (HMM), Conditional Random Field (CRF), the traditional C-SVM and the Cost-Sensitive-SVM (CS-SVM) for classifying the activities using binary and ubiquitous sensors. Originality/value Performance metrics in the experiment/simulation include Accuracy, Precision/Recall and F-measure.</abstract><cop>London</cop><pub>Kybernetes</pub><doi>10.1108/K-07-2014-0138</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0368-492X
ispartof Kybernetes, 2014-09, Vol.43 (8), p.1150-1164
issn 0368-492X
0368-492X
1758-7883
language eng
recordid cdi_proquest_journals_2250607991
source Emerald Journals
subjects Accuracy
Activities of daily living
Algorithms
Artificial intelligence
Classification
Computer simulation
Conditional random fields
Costs
Data processing
Datasets
Experiments
Houses
Human activity recognition
Machine learning
Markov chains
Markov models
Mathematical models
Moving object recognition
Older people
Order parameters
Performance measurement
Probabilistic models
Recall
Sensors
Smart buildings
Strategy
Support vector machines
Tuning
title A new classification strategy for human activity recognition using cost sensitive support vector machines for imbalanced data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20classification%20strategy%20for%20human%20activity%20recognition%20using%20cost%20sensitive%20support%20vector%20machines%20for%20imbalanced%20data&rft.jtitle=Kybernetes&rft.au=Fergani,%20Belkacem&rft.date=2014-09-15&rft.volume=43&rft.issue=8&rft.spage=1150&rft.epage=1164&rft.pages=1150-1164&rft.issn=0368-492X&rft.eissn=0368-492X&rft.coden=KBNTA3&rft_id=info:doi/10.1108/K-07-2014-0138&rft_dat=%3Cproquest_emera%3E2250607991%3C/proquest_emera%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650889706&rft_id=info:pmid/&rfr_iscdi=true