Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters
The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-07, Vol.179, p.407-421 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | |
container_start_page | 407 |
container_title | Energy (Oxford) |
container_volume | 179 |
creator | Macián, V. Serrano, J.R. Piqueras, P. Sanchis, E.J. |
description | The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature.
•Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order. |
doi_str_mv | 10.1016/j.energy.2019.04.200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250583715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219308400</els_id><sourcerecordid>2250583715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t76kTT8ugix-LCx40XNI86Ep3aYmqav_3iz17GnmvTdvYAahawI5AVLd9rketX__ySmQNocyIZygFWnqIqvqhp2iFRQVZKws6Tm6CKEHANa07Qqp7Ri1H8WAJ-c1VtaYOVg3YjEqLFRwforH0e4nISNOLH5oHJxL_NsqsRxHfBDDkJnBHfAkfLRyHkTU2NghuYdLdGbEEPTVH67R2-PD6-Y52708bTf3u0yWpI4Zg7qVEkTRdWBYWtUdbZuSmEYITdpOFbVUzChT6Q6kFF0BgjBQjBpKjVHFGt0svpN3n7MOkfduPoYLnFKWEhc1YUlVLirpXQheGz55uxf-hxPgxz55z5c--bFPDmVCSG93y5tOCb6s9jxIq0eplfVaRq6c_d_gFxbcgvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250583715</pqid></control><display><type>article</type><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><source>Elsevier ScienceDirect Journals</source><creator>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</creator><creatorcontrib>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</creatorcontrib><description>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature.
•Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.04.200</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Automobile industry ; Automotive engineering ; Automotive engines ; Carbon dioxide ; Compressibility ; Conditioning ; Crashworthiness ; Diffusion ; Exhaust aftertreatment system ; Exhaust systems ; Filters ; Fluid filters ; Impact strength ; Internal combustion engine ; Internal combustion engines ; Modelling ; Organic chemistry ; Oxidation ; Particulate filter ; Particulates ; Regeneration ; Soot ; Surface chemistry ; Temperature dependence ; Unsteady flow</subject><ispartof>Energy (Oxford), 2019-07, Vol.179, p.407-421</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</citedby><cites>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</cites><orcidid>0000-0003-0692-3917 ; 0000-0002-3767-0839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544219308400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Macián, V.</creatorcontrib><creatorcontrib>Serrano, J.R.</creatorcontrib><creatorcontrib>Piqueras, P.</creatorcontrib><creatorcontrib>Sanchis, E.J.</creatorcontrib><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><title>Energy (Oxford)</title><description>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature.
•Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</description><subject>Adsorption</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Automotive engines</subject><subject>Carbon dioxide</subject><subject>Compressibility</subject><subject>Conditioning</subject><subject>Crashworthiness</subject><subject>Diffusion</subject><subject>Exhaust aftertreatment system</subject><subject>Exhaust systems</subject><subject>Filters</subject><subject>Fluid filters</subject><subject>Impact strength</subject><subject>Internal combustion engine</subject><subject>Internal combustion engines</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Particulate filter</subject><subject>Particulates</subject><subject>Regeneration</subject><subject>Soot</subject><subject>Surface chemistry</subject><subject>Temperature dependence</subject><subject>Unsteady flow</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t76kTT8ugix-LCx40XNI86Ep3aYmqav_3iz17GnmvTdvYAahawI5AVLd9rketX__ySmQNocyIZygFWnqIqvqhp2iFRQVZKws6Tm6CKEHANa07Qqp7Ri1H8WAJ-c1VtaYOVg3YjEqLFRwforH0e4nISNOLH5oHJxL_NsqsRxHfBDDkJnBHfAkfLRyHkTU2NghuYdLdGbEEPTVH67R2-PD6-Y52708bTf3u0yWpI4Zg7qVEkTRdWBYWtUdbZuSmEYITdpOFbVUzChT6Q6kFF0BgjBQjBpKjVHFGt0svpN3n7MOkfduPoYLnFKWEhc1YUlVLirpXQheGz55uxf-hxPgxz55z5c--bFPDmVCSG93y5tOCb6s9jxIq0eplfVaRq6c_d_gFxbcgvA</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Macián, V.</creator><creator>Serrano, J.R.</creator><creator>Piqueras, P.</creator><creator>Sanchis, E.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0692-3917</orcidid><orcidid>https://orcid.org/0000-0002-3767-0839</orcidid></search><sort><creationdate>20190715</creationdate><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><author>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Automotive engines</topic><topic>Carbon dioxide</topic><topic>Compressibility</topic><topic>Conditioning</topic><topic>Crashworthiness</topic><topic>Diffusion</topic><topic>Exhaust aftertreatment system</topic><topic>Exhaust systems</topic><topic>Filters</topic><topic>Fluid filters</topic><topic>Impact strength</topic><topic>Internal combustion engine</topic><topic>Internal combustion engines</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Particulate filter</topic><topic>Particulates</topic><topic>Regeneration</topic><topic>Soot</topic><topic>Surface chemistry</topic><topic>Temperature dependence</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macián, V.</creatorcontrib><creatorcontrib>Serrano, J.R.</creatorcontrib><creatorcontrib>Piqueras, P.</creatorcontrib><creatorcontrib>Sanchis, E.J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macián, V.</au><au>Serrano, J.R.</au><au>Piqueras, P.</au><au>Sanchis, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>179</volume><spage>407</spage><epage>421</epage><pages>407-421</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature.
•Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.04.200</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0692-3917</orcidid><orcidid>https://orcid.org/0000-0002-3767-0839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-07, Vol.179, p.407-421 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2250583715 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Automobile industry Automotive engineering Automotive engines Carbon dioxide Compressibility Conditioning Crashworthiness Diffusion Exhaust aftertreatment system Exhaust systems Filters Fluid filters Impact strength Internal combustion engine Internal combustion engines Modelling Organic chemistry Oxidation Particulate filter Particulates Regeneration Soot Surface chemistry Temperature dependence Unsteady flow |
title | Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20pore%20diffusion%20and%20adsorption%20impact%20on%20the%20soot%20oxidation%20in%20wall-flow%20particulate%20filters&rft.jtitle=Energy%20(Oxford)&rft.au=Maci%C3%A1n,%20V.&rft.date=2019-07-15&rft.volume=179&rft.spage=407&rft.epage=421&rft.pages=407-421&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.04.200&rft_dat=%3Cproquest_cross%3E2250583715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250583715&rft_id=info:pmid/&rft_els_id=S0360544219308400&rfr_iscdi=true |