Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters

The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-07, Vol.179, p.407-421
Hauptverfasser: Macián, V., Serrano, J.R., Piqueras, P., Sanchis, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue
container_start_page 407
container_title Energy (Oxford)
container_volume 179
creator Macián, V.
Serrano, J.R.
Piqueras, P.
Sanchis, E.J.
description The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature. •Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.
doi_str_mv 10.1016/j.energy.2019.04.200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250583715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219308400</els_id><sourcerecordid>2250583715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8t76kTT8ugix-LCx40XNI86Ep3aYmqav_3iz17GnmvTdvYAahawI5AVLd9rketX__ySmQNocyIZygFWnqIqvqhp2iFRQVZKws6Tm6CKEHANa07Qqp7Ri1H8WAJ-c1VtaYOVg3YjEqLFRwforH0e4nISNOLH5oHJxL_NsqsRxHfBDDkJnBHfAkfLRyHkTU2NghuYdLdGbEEPTVH67R2-PD6-Y52708bTf3u0yWpI4Zg7qVEkTRdWBYWtUdbZuSmEYITdpOFbVUzChT6Q6kFF0BgjBQjBpKjVHFGt0svpN3n7MOkfduPoYLnFKWEhc1YUlVLirpXQheGz55uxf-hxPgxz55z5c--bFPDmVCSG93y5tOCb6s9jxIq0eplfVaRq6c_d_gFxbcgvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250583715</pqid></control><display><type>article</type><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><source>Elsevier ScienceDirect Journals</source><creator>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</creator><creatorcontrib>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</creatorcontrib><description>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature. •Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.04.200</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Automobile industry ; Automotive engineering ; Automotive engines ; Carbon dioxide ; Compressibility ; Conditioning ; Crashworthiness ; Diffusion ; Exhaust aftertreatment system ; Exhaust systems ; Filters ; Fluid filters ; Impact strength ; Internal combustion engine ; Internal combustion engines ; Modelling ; Organic chemistry ; Oxidation ; Particulate filter ; Particulates ; Regeneration ; Soot ; Surface chemistry ; Temperature dependence ; Unsteady flow</subject><ispartof>Energy (Oxford), 2019-07, Vol.179, p.407-421</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</citedby><cites>FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</cites><orcidid>0000-0003-0692-3917 ; 0000-0002-3767-0839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544219308400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Macián, V.</creatorcontrib><creatorcontrib>Serrano, J.R.</creatorcontrib><creatorcontrib>Piqueras, P.</creatorcontrib><creatorcontrib>Sanchis, E.J.</creatorcontrib><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><title>Energy (Oxford)</title><description>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature. •Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</description><subject>Adsorption</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Automotive engines</subject><subject>Carbon dioxide</subject><subject>Compressibility</subject><subject>Conditioning</subject><subject>Crashworthiness</subject><subject>Diffusion</subject><subject>Exhaust aftertreatment system</subject><subject>Exhaust systems</subject><subject>Filters</subject><subject>Fluid filters</subject><subject>Impact strength</subject><subject>Internal combustion engine</subject><subject>Internal combustion engines</subject><subject>Modelling</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Particulate filter</subject><subject>Particulates</subject><subject>Regeneration</subject><subject>Soot</subject><subject>Surface chemistry</subject><subject>Temperature dependence</subject><subject>Unsteady flow</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8t76kTT8ugix-LCx40XNI86Ep3aYmqav_3iz17GnmvTdvYAahawI5AVLd9rketX__ySmQNocyIZygFWnqIqvqhp2iFRQVZKws6Tm6CKEHANa07Qqp7Ri1H8WAJ-c1VtaYOVg3YjEqLFRwforH0e4nISNOLH5oHJxL_NsqsRxHfBDDkJnBHfAkfLRyHkTU2NghuYdLdGbEEPTVH67R2-PD6-Y52708bTf3u0yWpI4Zg7qVEkTRdWBYWtUdbZuSmEYITdpOFbVUzChT6Q6kFF0BgjBQjBpKjVHFGt0svpN3n7MOkfduPoYLnFKWEhc1YUlVLirpXQheGz55uxf-hxPgxz55z5c--bFPDmVCSG93y5tOCb6s9jxIq0eplfVaRq6c_d_gFxbcgvA</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Macián, V.</creator><creator>Serrano, J.R.</creator><creator>Piqueras, P.</creator><creator>Sanchis, E.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0692-3917</orcidid><orcidid>https://orcid.org/0000-0002-3767-0839</orcidid></search><sort><creationdate>20190715</creationdate><title>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</title><author>Macián, V. ; Serrano, J.R. ; Piqueras, P. ; Sanchis, E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5079cc0a3bb0f54177b29841f8aae19bd37cd5fdf6eb0ccab30a150d52f22ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Automotive engines</topic><topic>Carbon dioxide</topic><topic>Compressibility</topic><topic>Conditioning</topic><topic>Crashworthiness</topic><topic>Diffusion</topic><topic>Exhaust aftertreatment system</topic><topic>Exhaust systems</topic><topic>Filters</topic><topic>Fluid filters</topic><topic>Impact strength</topic><topic>Internal combustion engine</topic><topic>Internal combustion engines</topic><topic>Modelling</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Particulate filter</topic><topic>Particulates</topic><topic>Regeneration</topic><topic>Soot</topic><topic>Surface chemistry</topic><topic>Temperature dependence</topic><topic>Unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macián, V.</creatorcontrib><creatorcontrib>Serrano, J.R.</creatorcontrib><creatorcontrib>Piqueras, P.</creatorcontrib><creatorcontrib>Sanchis, E.J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macián, V.</au><au>Serrano, J.R.</au><au>Piqueras, P.</au><au>Sanchis, E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>179</volume><spage>407</spage><epage>421</epage><pages>407-421</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The automotive industry is driven its efforts to cleaner internal combustion engines. As a result, the engine has become conditioned by the exhaust aftertreatment systems. The regeneration of wall-flow particulate filters (PFs) evidences such an interaction. The PFs prevent the soot emission whereas, as a counterpart, the fuel consumption increases. Consequently, passive and active regeneration strategies are needed to clean the filter back and limit the penalty in CO2. In this context, modelling tools play a key role to achieve a comprehensive understanding and control of the regeneration. In this work, a regeneration model coupled to a one-dimensional compressible unsteady flow solver for PFs is presented. The importance of the main physical and chemical steps related to the soot oxidation is discussed. The influence of the diffusion of gaseous reactants inside the primary soot particles is firstly addressed. The inclusion of this step into the definition of the reaction rate provides temperature dependence to the soot specific surface. Next, the reactants adsorption is analysed. This step leads to define a surface coverage, which behave as an equivalent reaction order. It allows figuring out the influence of the gaseous reactants concentration on the reaction rate and its dependence with the temperature. •Wall-flow DPF regeneration model coupled to a 1D compressible flow solver.•Detailed description of the reaction rate definition for dual oxidation of soot.•Identification of reactivity stages during active regeneration processes.•The internal pore diffusion determines the effective soot specific surface.•Reactants adsorption on soot particles reveals variable equivalent reaction order.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.04.200</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0692-3917</orcidid><orcidid>https://orcid.org/0000-0002-3767-0839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-07, Vol.179, p.407-421
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2250583715
source Elsevier ScienceDirect Journals
subjects Adsorption
Automobile industry
Automotive engineering
Automotive engines
Carbon dioxide
Compressibility
Conditioning
Crashworthiness
Diffusion
Exhaust aftertreatment system
Exhaust systems
Filters
Fluid filters
Impact strength
Internal combustion engine
Internal combustion engines
Modelling
Organic chemistry
Oxidation
Particulate filter
Particulates
Regeneration
Soot
Surface chemistry
Temperature dependence
Unsteady flow
title Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20pore%20diffusion%20and%20adsorption%20impact%20on%20the%20soot%20oxidation%20in%20wall-flow%20particulate%20filters&rft.jtitle=Energy%20(Oxford)&rft.au=Maci%C3%A1n,%20V.&rft.date=2019-07-15&rft.volume=179&rft.spage=407&rft.epage=421&rft.pages=407-421&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.04.200&rft_dat=%3Cproquest_cross%3E2250583715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250583715&rft_id=info:pmid/&rft_els_id=S0360544219308400&rfr_iscdi=true