Partitions, diophantine equations, and control systems
Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-06, Vol.263, p.96-104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | |
container_start_page | 96 |
container_title | Discrete Applied Mathematics |
container_volume | 263 |
creator | Carriegos, Miguel V. DeCastro-García, Noemí Muñoz Castañeda, Ángel Luis |
description | Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature. |
doi_str_mv | 10.1016/j.dam.2018.01.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250582807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18300799</els_id><sourcerecordid>2250582807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edZDebFE9S_AcFPSh4C3GSYJZ20yap0G9vSnsWHgwzvN_M8Ai5ptBQoP3d0Bi9ahhQ2QAt4idkQqVgdS8EPSWT4ulrRuXXOblIaQAAWroJ6d91zD77MKbbyviw_tFj9qOt7Garj2M9mgrDmGNYVmmXsl2lS3Lm9DLZq2Odks-nx4_5S714e36dPyxqbHuZ6w5djwjaCdt1rNeWIzOoOXTcSQZdZ7njgmk-c858c-e4QcGwRWjFjKFrp-TmsHcdw2ZrU1ZD2MaxnFSMceCSSRDFRQ8ujCGlaJ1aR7_ScacoqH08alAlHrWPRwEt4oW5PzC2vP_rbVQJvR3RGh8tZmWC_4f-A-iObYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250582807</pqid></control><display><type>article</type><title>Partitions, diophantine equations, and control systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</creator><creatorcontrib>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</creatorcontrib><description>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.01.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Abelian monoid ; Classification ; Diophantine equation ; Dynamical systems ; Feedback ; Mathematical analysis ; Monoids ; Partition ; Partitions (mathematics) ; Rings (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2019-06, Vol.263, p.96-104</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 30, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</citedby><cites>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</cites><orcidid>0000-0002-6850-0277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X18300799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Carriegos, Miguel V.</creatorcontrib><creatorcontrib>DeCastro-García, Noemí</creatorcontrib><creatorcontrib>Muñoz Castañeda, Ángel Luis</creatorcontrib><title>Partitions, diophantine equations, and control systems</title><title>Discrete Applied Mathematics</title><description>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</description><subject>Abelian monoid</subject><subject>Classification</subject><subject>Diophantine equation</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Mathematical analysis</subject><subject>Monoids</subject><subject>Partition</subject><subject>Partitions (mathematics)</subject><subject>Rings (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edZDebFE9S_AcFPSh4C3GSYJZ20yap0G9vSnsWHgwzvN_M8Ai5ptBQoP3d0Bi9ahhQ2QAt4idkQqVgdS8EPSWT4ulrRuXXOblIaQAAWroJ6d91zD77MKbbyviw_tFj9qOt7Garj2M9mgrDmGNYVmmXsl2lS3Lm9DLZq2Odks-nx4_5S714e36dPyxqbHuZ6w5djwjaCdt1rNeWIzOoOXTcSQZdZ7njgmk-c858c-e4QcGwRWjFjKFrp-TmsHcdw2ZrU1ZD2MaxnFSMceCSSRDFRQ8ujCGlaJ1aR7_ScacoqH08alAlHrWPRwEt4oW5PzC2vP_rbVQJvR3RGh8tZmWC_4f-A-iObYs</recordid><startdate>20190630</startdate><enddate>20190630</enddate><creator>Carriegos, Miguel V.</creator><creator>DeCastro-García, Noemí</creator><creator>Muñoz Castañeda, Ángel Luis</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6850-0277</orcidid></search><sort><creationdate>20190630</creationdate><title>Partitions, diophantine equations, and control systems</title><author>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abelian monoid</topic><topic>Classification</topic><topic>Diophantine equation</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Mathematical analysis</topic><topic>Monoids</topic><topic>Partition</topic><topic>Partitions (mathematics)</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carriegos, Miguel V.</creatorcontrib><creatorcontrib>DeCastro-García, Noemí</creatorcontrib><creatorcontrib>Muñoz Castañeda, Ángel Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carriegos, Miguel V.</au><au>DeCastro-García, Noemí</au><au>Muñoz Castañeda, Ángel Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partitions, diophantine equations, and control systems</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-06-30</date><risdate>2019</risdate><volume>263</volume><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.01.015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6850-0277</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-06, Vol.263, p.96-104 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2250582807 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abelian monoid Classification Diophantine equation Dynamical systems Feedback Mathematical analysis Monoids Partition Partitions (mathematics) Rings (mathematics) |
title | Partitions, diophantine equations, and control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partitions,%20diophantine%20equations,%20and%20control%20systems&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Carriegos,%20Miguel%20V.&rft.date=2019-06-30&rft.volume=263&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.01.015&rft_dat=%3Cproquest_cross%3E2250582807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250582807&rft_id=info:pmid/&rft_els_id=S0166218X18300799&rfr_iscdi=true |