Partitions, diophantine equations, and control systems

Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-06, Vol.263, p.96-104
Hauptverfasser: Carriegos, Miguel V., DeCastro-García, Noemí, Muñoz Castañeda, Ángel Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 96
container_title Discrete Applied Mathematics
container_volume 263
creator Carriegos, Miguel V.
DeCastro-García, Noemí
Muñoz Castañeda, Ángel Luis
description Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.
doi_str_mv 10.1016/j.dam.2018.01.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250582807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18300799</els_id><sourcerecordid>2250582807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edZDebFE9S_AcFPSh4C3GSYJZ20yap0G9vSnsWHgwzvN_M8Ai5ptBQoP3d0Bi9ahhQ2QAt4idkQqVgdS8EPSWT4ulrRuXXOblIaQAAWroJ6d91zD77MKbbyviw_tFj9qOt7Garj2M9mgrDmGNYVmmXsl2lS3Lm9DLZq2Odks-nx4_5S714e36dPyxqbHuZ6w5djwjaCdt1rNeWIzOoOXTcSQZdZ7njgmk-c858c-e4QcGwRWjFjKFrp-TmsHcdw2ZrU1ZD2MaxnFSMceCSSRDFRQ8ujCGlaJ1aR7_ScacoqH08alAlHrWPRwEt4oW5PzC2vP_rbVQJvR3RGh8tZmWC_4f-A-iObYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250582807</pqid></control><display><type>article</type><title>Partitions, diophantine equations, and control systems</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</creator><creatorcontrib>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</creatorcontrib><description>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.01.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Abelian monoid ; Classification ; Diophantine equation ; Dynamical systems ; Feedback ; Mathematical analysis ; Monoids ; Partition ; Partitions (mathematics) ; Rings (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2019-06, Vol.263, p.96-104</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 30, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</citedby><cites>FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</cites><orcidid>0000-0002-6850-0277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X18300799$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Carriegos, Miguel V.</creatorcontrib><creatorcontrib>DeCastro-García, Noemí</creatorcontrib><creatorcontrib>Muñoz Castañeda, Ángel Luis</creatorcontrib><title>Partitions, diophantine equations, and control systems</title><title>Discrete Applied Mathematics</title><description>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</description><subject>Abelian monoid</subject><subject>Classification</subject><subject>Diophantine equation</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Mathematical analysis</subject><subject>Monoids</subject><subject>Partition</subject><subject>Partitions (mathematics)</subject><subject>Rings (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuCV3edZDebFE9S_AcFPSh4C3GSYJZ20yap0G9vSnsWHgwzvN_M8Ai5ptBQoP3d0Bi9ahhQ2QAt4idkQqVgdS8EPSWT4ulrRuXXOblIaQAAWroJ6d91zD77MKbbyviw_tFj9qOt7Garj2M9mgrDmGNYVmmXsl2lS3Lm9DLZq2Odks-nx4_5S714e36dPyxqbHuZ6w5djwjaCdt1rNeWIzOoOXTcSQZdZ7njgmk-c858c-e4QcGwRWjFjKFrp-TmsHcdw2ZrU1ZD2MaxnFSMceCSSRDFRQ8ujCGlaJ1aR7_ScacoqH08alAlHrWPRwEt4oW5PzC2vP_rbVQJvR3RGh8tZmWC_4f-A-iObYs</recordid><startdate>20190630</startdate><enddate>20190630</enddate><creator>Carriegos, Miguel V.</creator><creator>DeCastro-García, Noemí</creator><creator>Muñoz Castañeda, Ángel Luis</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6850-0277</orcidid></search><sort><creationdate>20190630</creationdate><title>Partitions, diophantine equations, and control systems</title><author>Carriegos, Miguel V. ; DeCastro-García, Noemí ; Muñoz Castañeda, Ángel Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-4cf6cc0af7e4426ae5c2dca5045f82044e5f572a59ffdb5ff5dc72c3c03792cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abelian monoid</topic><topic>Classification</topic><topic>Diophantine equation</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Mathematical analysis</topic><topic>Monoids</topic><topic>Partition</topic><topic>Partitions (mathematics)</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carriegos, Miguel V.</creatorcontrib><creatorcontrib>DeCastro-García, Noemí</creatorcontrib><creatorcontrib>Muñoz Castañeda, Ángel Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carriegos, Miguel V.</au><au>DeCastro-García, Noemí</au><au>Muñoz Castañeda, Ángel Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partitions, diophantine equations, and control systems</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-06-30</date><risdate>2019</risdate><volume>263</volume><spage>96</spage><epage>104</epage><pages>96-104</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Ordered partitions of elements of a reduced abelian monoid are defined and studied by means of the solutions of linear diophantine equations. Links to feedback classification of linear dynamical systems over certain commutative rings are given in the same way as partitions of integers are related to feedback classification of linear dynamical systems over fields in the classical literature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.01.015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6850-0277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2019-06, Vol.263, p.96-104
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2250582807
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abelian monoid
Classification
Diophantine equation
Dynamical systems
Feedback
Mathematical analysis
Monoids
Partition
Partitions (mathematics)
Rings (mathematics)
title Partitions, diophantine equations, and control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partitions,%20diophantine%20equations,%20and%20control%20systems&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Carriegos,%20Miguel%20V.&rft.date=2019-06-30&rft.volume=263&rft.spage=96&rft.epage=104&rft.pages=96-104&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.01.015&rft_dat=%3Cproquest_cross%3E2250582807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250582807&rft_id=info:pmid/&rft_els_id=S0166218X18300799&rfr_iscdi=true