Periodic and quasi-periodic orbit design based on the center manifold theory
This paper proposes a new numerical method for finding libration point orbits in the vicinity of collinear libration points in the circular restricted three-body problem. The main advantage of this method is that it requires neither an initial guess nor complex algebraic manipulations for finding bo...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2019-07, Vol.160, p.672-682 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | |
container_start_page | 672 |
container_title | Acta astronautica |
container_volume | 160 |
creator | Akiyama, Yuki Bando, Mai Hokamoto, Shinji |
description | This paper proposes a new numerical method for finding libration point orbits in the vicinity of collinear libration points in the circular restricted three-body problem. The main advantage of this method is that it requires neither an initial guess nor complex algebraic manipulations for finding both quasi-periodic and periodic orbits. The proposed method consists of two steps: center manifold design and differential correction. The first step provides a quasi-periodic orbit parametrized by a single parameter vector. In the second step, the parameter vector in the first step is used to obtain an exact periodic orbit. This method is applied to find periodic and quasi-periodic orbits in the Sun-Earth restricted three-body problem around the L1 and L2 libration points.
•A new numerical method for finding libration point orbits is proposed.•The center manifold theorem is applied to obtain quasi-periodic orbits.•Quasi-periodic orbits are corrected to exact periodic orbits.•Neither an initial guess nor complex algebraic manipulations are required. |
doi_str_mv | 10.1016/j.actaastro.2019.02.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250579562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576517309116</els_id><sourcerecordid>2250579562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-60de163abb665c3705cc1de6c0d1d6f3b6d8e70728223a300d61effc37b4fb6c3</originalsourceid><addsrcrecordid>eNqFUNFKAzEQDKJgrX6DAZ_v3CRNrvdYilqhoA_6HHLJnuZoL22SCv1776j6KgwsDDOzu0PILYOSAVP3XWlsNiblGEoOrC6BD6jPyITNq7rgIOCcTADqWSErJS_JVUodAFR8Xk_I-hWjD85banpH9weTfLH7pUJsfKYOk__oaWMSOhp6mj-RWuwzRro1vW_Dxo1ciMdrctGaTcKbnzkl748Pb8tVsX55el4u1oWVwHOhwCFTwjSNUtKKCqS1zKGy4JhTrWiUm2M1Hsi5MALAKYZtOyibWdsoK6bk7pS7i2F_wJR1Fw6xH1ZqziXIqpaKD6rqpLIxpBSx1bvotyYeNQM9Vqc7_VedHqvTwAfUg3NxcuLwxJfHqJP12Ft0PqLN2gX_b8Y3Iet8ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250579562</pqid></control><display><type>article</type><title>Periodic and quasi-periodic orbit design based on the center manifold theory</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Akiyama, Yuki ; Bando, Mai ; Hokamoto, Shinji</creator><creatorcontrib>Akiyama, Yuki ; Bando, Mai ; Hokamoto, Shinji</creatorcontrib><description>This paper proposes a new numerical method for finding libration point orbits in the vicinity of collinear libration points in the circular restricted three-body problem. The main advantage of this method is that it requires neither an initial guess nor complex algebraic manipulations for finding both quasi-periodic and periodic orbits. The proposed method consists of two steps: center manifold design and differential correction. The first step provides a quasi-periodic orbit parametrized by a single parameter vector. In the second step, the parameter vector in the first step is used to obtain an exact periodic orbit. This method is applied to find periodic and quasi-periodic orbits in the Sun-Earth restricted three-body problem around the L1 and L2 libration points.
•A new numerical method for finding libration point orbits is proposed.•The center manifold theorem is applied to obtain quasi-periodic orbits.•Quasi-periodic orbits are corrected to exact periodic orbits.•Neither an initial guess nor complex algebraic manipulations are required.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2019.02.029</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Center manifold theorem ; Centre manifold theory ; Chaos theory ; Lagrangian equilibrium points ; Libration ; Numerical methods ; Orbits ; Parameters ; Periodic orbit ; Quasi-periodic orbit ; Three body problem</subject><ispartof>Acta astronautica, 2019-07, Vol.160, p.672-682</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-60de163abb665c3705cc1de6c0d1d6f3b6d8e70728223a300d61effc37b4fb6c3</citedby><cites>FETCH-LOGICAL-c502t-60de163abb665c3705cc1de6c0d1d6f3b6d8e70728223a300d61effc37b4fb6c3</cites><orcidid>0000-0002-8647-1406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2019.02.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Akiyama, Yuki</creatorcontrib><creatorcontrib>Bando, Mai</creatorcontrib><creatorcontrib>Hokamoto, Shinji</creatorcontrib><title>Periodic and quasi-periodic orbit design based on the center manifold theory</title><title>Acta astronautica</title><description>This paper proposes a new numerical method for finding libration point orbits in the vicinity of collinear libration points in the circular restricted three-body problem. The main advantage of this method is that it requires neither an initial guess nor complex algebraic manipulations for finding both quasi-periodic and periodic orbits. The proposed method consists of two steps: center manifold design and differential correction. The first step provides a quasi-periodic orbit parametrized by a single parameter vector. In the second step, the parameter vector in the first step is used to obtain an exact periodic orbit. This method is applied to find periodic and quasi-periodic orbits in the Sun-Earth restricted three-body problem around the L1 and L2 libration points.
•A new numerical method for finding libration point orbits is proposed.•The center manifold theorem is applied to obtain quasi-periodic orbits.•Quasi-periodic orbits are corrected to exact periodic orbits.•Neither an initial guess nor complex algebraic manipulations are required.</description><subject>Center manifold theorem</subject><subject>Centre manifold theory</subject><subject>Chaos theory</subject><subject>Lagrangian equilibrium points</subject><subject>Libration</subject><subject>Numerical methods</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Periodic orbit</subject><subject>Quasi-periodic orbit</subject><subject>Three body problem</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUNFKAzEQDKJgrX6DAZ_v3CRNrvdYilqhoA_6HHLJnuZoL22SCv1776j6KgwsDDOzu0PILYOSAVP3XWlsNiblGEoOrC6BD6jPyITNq7rgIOCcTADqWSErJS_JVUodAFR8Xk_I-hWjD85banpH9weTfLH7pUJsfKYOk__oaWMSOhp6mj-RWuwzRro1vW_Dxo1ciMdrctGaTcKbnzkl748Pb8tVsX55el4u1oWVwHOhwCFTwjSNUtKKCqS1zKGy4JhTrWiUm2M1Hsi5MALAKYZtOyibWdsoK6bk7pS7i2F_wJR1Fw6xH1ZqziXIqpaKD6rqpLIxpBSx1bvotyYeNQM9Vqc7_VedHqvTwAfUg3NxcuLwxJfHqJP12Ft0PqLN2gX_b8Y3Iet8ZA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Akiyama, Yuki</creator><creator>Bando, Mai</creator><creator>Hokamoto, Shinji</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8647-1406</orcidid></search><sort><creationdate>201907</creationdate><title>Periodic and quasi-periodic orbit design based on the center manifold theory</title><author>Akiyama, Yuki ; Bando, Mai ; Hokamoto, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-60de163abb665c3705cc1de6c0d1d6f3b6d8e70728223a300d61effc37b4fb6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Center manifold theorem</topic><topic>Centre manifold theory</topic><topic>Chaos theory</topic><topic>Lagrangian equilibrium points</topic><topic>Libration</topic><topic>Numerical methods</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Periodic orbit</topic><topic>Quasi-periodic orbit</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiyama, Yuki</creatorcontrib><creatorcontrib>Bando, Mai</creatorcontrib><creatorcontrib>Hokamoto, Shinji</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiyama, Yuki</au><au>Bando, Mai</au><au>Hokamoto, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic and quasi-periodic orbit design based on the center manifold theory</atitle><jtitle>Acta astronautica</jtitle><date>2019-07</date><risdate>2019</risdate><volume>160</volume><spage>672</spage><epage>682</epage><pages>672-682</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>This paper proposes a new numerical method for finding libration point orbits in the vicinity of collinear libration points in the circular restricted three-body problem. The main advantage of this method is that it requires neither an initial guess nor complex algebraic manipulations for finding both quasi-periodic and periodic orbits. The proposed method consists of two steps: center manifold design and differential correction. The first step provides a quasi-periodic orbit parametrized by a single parameter vector. In the second step, the parameter vector in the first step is used to obtain an exact periodic orbit. This method is applied to find periodic and quasi-periodic orbits in the Sun-Earth restricted three-body problem around the L1 and L2 libration points.
•A new numerical method for finding libration point orbits is proposed.•The center manifold theorem is applied to obtain quasi-periodic orbits.•Quasi-periodic orbits are corrected to exact periodic orbits.•Neither an initial guess nor complex algebraic manipulations are required.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2019.02.029</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8647-1406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2019-07, Vol.160, p.672-682 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2250579562 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Center manifold theorem Centre manifold theory Chaos theory Lagrangian equilibrium points Libration Numerical methods Orbits Parameters Periodic orbit Quasi-periodic orbit Three body problem |
title | Periodic and quasi-periodic orbit design based on the center manifold theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20and%20quasi-periodic%20orbit%20design%20based%20on%20the%20center%20manifold%20theory&rft.jtitle=Acta%20astronautica&rft.au=Akiyama,%20Yuki&rft.date=2019-07&rft.volume=160&rft.spage=672&rft.epage=682&rft.pages=672-682&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2019.02.029&rft_dat=%3Cproquest_cross%3E2250579562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250579562&rft_id=info:pmid/&rft_els_id=S0094576517309116&rfr_iscdi=true |