Convergence in GDP per capita across the EU regions-spatial effects 1
The aim of this paper is to offer an empirical insight into the spatial effects of growth of regional income and disparities across EU regions (NUTS 2). Since regions are spatial units and there are interrelated standard linear regression is not sufficient to evidence the convergence process. Two mo...
Gespeichert in:
Veröffentlicht in: | Economics and business review 2019-01, Vol.5 (2), p.64-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 2 |
container_start_page | 64 |
container_title | Economics and business review |
container_volume | 5 |
creator | Pietrzykowski, Maciej |
description | The aim of this paper is to offer an empirical insight into the spatial effects of growth of regional income and disparities across EU regions (NUTS 2). Since regions are spatial units and there are interrelated standard linear regression is not sufficient to evidence the convergence process. Two models (Spatial Lag Model - SLM and Spatial Error model - SEM), derived from spatial econometrics, have been used to identify and explain spatial effects in convergence clubs-all EU countries (EU-28), countries that entered the EU in 2004 (EU-13) and countries that were in EU prior to 2004 (EU-15). Unconditional and conditional ß-convergence has been examined in the period 2000-2015 thus covering two financial perspectives (including n + 2 rule3). Dummy variables have been also applied to catch the country-specific effects, such as national policies, legislation, technology progress, etc. |
doi_str_mv | 10.18559/ebr.2019.2.4 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2250567564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250567564</sourcerecordid><originalsourceid>FETCH-proquest_journals_22505675643</originalsourceid><addsrcrecordid>eNqNjbEKwjAURYMoWNTR_YFz6ktsqp1r1dFBZ4nlVSuS1Lzo99vBD3C6B86BK8RcYao2xhRLuoZUoypSnWYDkejMoEQs1sOeV4WWKs_UWMyYH4ioTK61NomoSu8-FG7kaoLWwX57hI4C1LZrowVbB88M8U5QnSHQrfWOJXc2tvYJ1DRURwY1FaPGPplmv52Ixa46lQfZBf96E8fLw7-D69Wlf0WTr02erf6rvmKvQGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250567564</pqid></control><display><type>article</type><title>Convergence in GDP per capita across the EU regions-spatial effects 1</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Pietrzykowski, Maciej</creator><creatorcontrib>Pietrzykowski, Maciej</creatorcontrib><description>The aim of this paper is to offer an empirical insight into the spatial effects of growth of regional income and disparities across EU regions (NUTS 2). Since regions are spatial units and there are interrelated standard linear regression is not sufficient to evidence the convergence process. Two models (Spatial Lag Model - SLM and Spatial Error model - SEM), derived from spatial econometrics, have been used to identify and explain spatial effects in convergence clubs-all EU countries (EU-28), countries that entered the EU in 2004 (EU-13) and countries that were in EU prior to 2004 (EU-15). Unconditional and conditional ß-convergence has been examined in the period 2000-2015 thus covering two financial perspectives (including n + 2 rule3). Dummy variables have been also applied to catch the country-specific effects, such as national policies, legislation, technology progress, etc.</description><identifier>ISSN: 2392-1641</identifier><identifier>EISSN: 2450-0097</identifier><identifier>DOI: 10.18559/ebr.2019.2.4</identifier><language>eng</language><publisher>Poznan: Poznan University of Economics</publisher><subject>Econometrics ; Economic growth ; Economic models ; GDP ; Gross Domestic Product ; Hypotheses ; Per capita ; Productivity ; Regions ; Regression analysis ; Urbanization ; Variables</subject><ispartof>Economics and business review, 2019-01, Vol.5 (2), p.64-85</ispartof><rights>Copyright Poznan University of Economics 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Pietrzykowski, Maciej</creatorcontrib><title>Convergence in GDP per capita across the EU regions-spatial effects 1</title><title>Economics and business review</title><description>The aim of this paper is to offer an empirical insight into the spatial effects of growth of regional income and disparities across EU regions (NUTS 2). Since regions are spatial units and there are interrelated standard linear regression is not sufficient to evidence the convergence process. Two models (Spatial Lag Model - SLM and Spatial Error model - SEM), derived from spatial econometrics, have been used to identify and explain spatial effects in convergence clubs-all EU countries (EU-28), countries that entered the EU in 2004 (EU-13) and countries that were in EU prior to 2004 (EU-15). Unconditional and conditional ß-convergence has been examined in the period 2000-2015 thus covering two financial perspectives (including n + 2 rule3). Dummy variables have been also applied to catch the country-specific effects, such as national policies, legislation, technology progress, etc.</description><subject>Econometrics</subject><subject>Economic growth</subject><subject>Economic models</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Hypotheses</subject><subject>Per capita</subject><subject>Productivity</subject><subject>Regions</subject><subject>Regression analysis</subject><subject>Urbanization</subject><subject>Variables</subject><issn>2392-1641</issn><issn>2450-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEKwjAURYMoWNTR_YFz6ktsqp1r1dFBZ4nlVSuS1Lzo99vBD3C6B86BK8RcYao2xhRLuoZUoypSnWYDkejMoEQs1sOeV4WWKs_UWMyYH4ioTK61NomoSu8-FG7kaoLWwX57hI4C1LZrowVbB88M8U5QnSHQrfWOJXc2tvYJ1DRURwY1FaPGPplmv52Ixa46lQfZBf96E8fLw7-D69Wlf0WTr02erf6rvmKvQGY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Pietrzykowski, Maciej</creator><general>Poznan University of Economics</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Convergence in GDP per capita across the EU regions-spatial effects 1</title><author>Pietrzykowski, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22505675643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Econometrics</topic><topic>Economic growth</topic><topic>Economic models</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Hypotheses</topic><topic>Per capita</topic><topic>Productivity</topic><topic>Regions</topic><topic>Regression analysis</topic><topic>Urbanization</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietrzykowski, Maciej</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Economics and business review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietrzykowski, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence in GDP per capita across the EU regions-spatial effects 1</atitle><jtitle>Economics and business review</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>5</volume><issue>2</issue><spage>64</spage><epage>85</epage><pages>64-85</pages><issn>2392-1641</issn><eissn>2450-0097</eissn><abstract>The aim of this paper is to offer an empirical insight into the spatial effects of growth of regional income and disparities across EU regions (NUTS 2). Since regions are spatial units and there are interrelated standard linear regression is not sufficient to evidence the convergence process. Two models (Spatial Lag Model - SLM and Spatial Error model - SEM), derived from spatial econometrics, have been used to identify and explain spatial effects in convergence clubs-all EU countries (EU-28), countries that entered the EU in 2004 (EU-13) and countries that were in EU prior to 2004 (EU-15). Unconditional and conditional ß-convergence has been examined in the period 2000-2015 thus covering two financial perspectives (including n + 2 rule3). Dummy variables have been also applied to catch the country-specific effects, such as national policies, legislation, technology progress, etc.</abstract><cop>Poznan</cop><pub>Poznan University of Economics</pub><doi>10.18559/ebr.2019.2.4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2392-1641 |
ispartof | Economics and business review, 2019-01, Vol.5 (2), p.64-85 |
issn | 2392-1641 2450-0097 |
language | eng |
recordid | cdi_proquest_journals_2250567564 |
source | De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Econometrics Economic growth Economic models GDP Gross Domestic Product Hypotheses Per capita Productivity Regions Regression analysis Urbanization Variables |
title | Convergence in GDP per capita across the EU regions-spatial effects 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20in%20GDP%20per%20capita%20across%20the%20EU%20regions-spatial%20effects%201&rft.jtitle=Economics%20and%20business%20review&rft.au=Pietrzykowski,%20Maciej&rft.date=2019-01-01&rft.volume=5&rft.issue=2&rft.spage=64&rft.epage=85&rft.pages=64-85&rft.issn=2392-1641&rft.eissn=2450-0097&rft_id=info:doi/10.18559/ebr.2019.2.4&rft_dat=%3Cproquest%3E2250567564%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250567564&rft_id=info:pmid/&rfr_iscdi=true |