Fast approximate truncated SVD

Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2019-08, Vol.26 (4), p.n/a
Hauptverfasser: Shishkin, Serge L., Shalaginov, Arkadi, Bopardikar, Shaunak D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Numerical linear algebra with applications
container_volume 26
creator Shishkin, Serge L.
Shalaginov, Arkadi
Bopardikar, Shaunak D.
description Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.
doi_str_mv 10.1002/nla.2246
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250446005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250446005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-c8b20da5c243bee28f38c7f94cdaf40f013db9e1d5dc2ad90aeba15c8dd10b03</originalsourceid><addsrcrecordid>eNp1j0tLw0AUhQdRsFbBXyABN26m3nmlmWWpVoWgC4vbYTIPaIlJnEnQ_vtOjFtX9yw-zj0fQtcEFgSA3je1XlDK8xM0IyAlJgLy0zEvAQtGxTm6iHEPALmQbIZuNjr2me660P7sPnXvsj4MjUnBZu8fD5fozOs6uqu_O0fbzeN2_YzLt6eX9arEhkqWY1NUFKwWhnJWOUcLzwqz9JIbqz0HD4TZSjpihTVUWwnaVZoIU1hLoAI2R7dTbZrxNbjYq307hCZ9VJQK4DwHEIm6mygT2hiD86oLaXM4KAJqlFdJXo3yCcUT-r2r3eFfTr2Wq1_-COP_WaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250446005</pqid></control><display><type>article</type><title>Fast approximate truncated SVD</title><source>Wiley Online Library All Journals</source><creator>Shishkin, Serge L. ; Shalaginov, Arkadi ; Bopardikar, Shaunak D.</creator><creatorcontrib>Shishkin, Serge L. ; Shalaginov, Arkadi ; Bopardikar, Shaunak D.</creatorcontrib><description>Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.2246</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer simulation ; incremental computation ; matrix factorization ; Methods ; Parallel processing ; Randomization ; scalability ; Singular value decomposition</subject><ispartof>Numerical linear algebra with applications, 2019-08, Vol.26 (4), p.n/a</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-c8b20da5c243bee28f38c7f94cdaf40f013db9e1d5dc2ad90aeba15c8dd10b03</citedby><cites>FETCH-LOGICAL-c2936-c8b20da5c243bee28f38c7f94cdaf40f013db9e1d5dc2ad90aeba15c8dd10b03</cites><orcidid>0000-0002-9864-030X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.2246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.2246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shishkin, Serge L.</creatorcontrib><creatorcontrib>Shalaginov, Arkadi</creatorcontrib><creatorcontrib>Bopardikar, Shaunak D.</creatorcontrib><title>Fast approximate truncated SVD</title><title>Numerical linear algebra with applications</title><description>Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>incremental computation</subject><subject>matrix factorization</subject><subject>Methods</subject><subject>Parallel processing</subject><subject>Randomization</subject><subject>scalability</subject><subject>Singular value decomposition</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLw0AUhQdRsFbBXyABN26m3nmlmWWpVoWgC4vbYTIPaIlJnEnQ_vtOjFtX9yw-zj0fQtcEFgSA3je1XlDK8xM0IyAlJgLy0zEvAQtGxTm6iHEPALmQbIZuNjr2me660P7sPnXvsj4MjUnBZu8fD5fozOs6uqu_O0fbzeN2_YzLt6eX9arEhkqWY1NUFKwWhnJWOUcLzwqz9JIbqz0HD4TZSjpihTVUWwnaVZoIU1hLoAI2R7dTbZrxNbjYq307hCZ9VJQK4DwHEIm6mygT2hiD86oLaXM4KAJqlFdJXo3yCcUT-r2r3eFfTr2Wq1_-COP_WaA</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Shishkin, Serge L.</creator><creator>Shalaginov, Arkadi</creator><creator>Bopardikar, Shaunak D.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9864-030X</orcidid></search><sort><creationdate>201908</creationdate><title>Fast approximate truncated SVD</title><author>Shishkin, Serge L. ; Shalaginov, Arkadi ; Bopardikar, Shaunak D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-c8b20da5c243bee28f38c7f94cdaf40f013db9e1d5dc2ad90aeba15c8dd10b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>incremental computation</topic><topic>matrix factorization</topic><topic>Methods</topic><topic>Parallel processing</topic><topic>Randomization</topic><topic>scalability</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shishkin, Serge L.</creatorcontrib><creatorcontrib>Shalaginov, Arkadi</creatorcontrib><creatorcontrib>Bopardikar, Shaunak D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shishkin, Serge L.</au><au>Shalaginov, Arkadi</au><au>Bopardikar, Shaunak D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast approximate truncated SVD</atitle><jtitle>Numerical linear algebra with applications</jtitle><date>2019-08</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><epage>n/a</epage><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Summary This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nla.2246</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9864-030X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2019-08, Vol.26 (4), p.n/a
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_journals_2250446005
source Wiley Online Library All Journals
subjects Asymptotic methods
Asymptotic properties
Computer simulation
incremental computation
matrix factorization
Methods
Parallel processing
Randomization
scalability
Singular value decomposition
title Fast approximate truncated SVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20approximate%20truncated%20SVD&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Shishkin,%20Serge%20L.&rft.date=2019-08&rft.volume=26&rft.issue=4&rft.epage=n/a&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.2246&rft_dat=%3Cproquest_cross%3E2250446005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250446005&rft_id=info:pmid/&rfr_iscdi=true