ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis
The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allo...
Gespeichert in:
Veröffentlicht in: | Acta geotechnica 2020-06, Vol.15 (6), p.1513-1531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1531 |
---|---|
container_issue | 6 |
container_start_page | 1513 |
container_title | Acta geotechnica |
container_volume | 15 |
creator | Fuentes, William Wichtmann, Torsten Gil, Melany Lascarro, Carlos |
description | The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271,
1996
) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254,
2015
) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed. |
doi_str_mv | 10.1007/s11440-019-00846-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250341964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250341964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPBczRvTdrjGOoGAw_Tc0jSZGR0TU2yQ7-93Tr05ul54P_Cnx8Ajxg9Y4TES8KYMQQRriFCFeOQXIEZrjiGGFN6_fuT8hbcpbRHiFPC-Axs19sFXA196FuVsjc-D4UyJhy77Ltd4UIszGBab4pD0L49ydY5a3I6a63_PlqnTPahK1Sn2iH5dA9unGqTfbjcOfh6e_1cruDm4329XGygYqjKkFJtBaaaE621sY1zddkIrW3DK40ZpRUTjnPGVd0w6owQtLRVY43lwlhX0jl4mnr7GMYZKct9OMZxRJKElIgyXHM2usjkMjGkFK2TffQHFQeJkTzBkxM8OcKTZ3iSjCE6hdJo7nY2_lX_k_oBJ3Rz3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250341964</pqid></control><display><type>article</type><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</creator><creatorcontrib>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</creatorcontrib><description>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271,
1996
) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254,
2015
) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-019-00846-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Complex Fluids and Microfluidics ; Computer simulation ; Detection ; Engineering ; Finite element method ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Hypoplasticity ; Liquefaction ; Mathematical models ; Mobility ; Offshore ; Research Paper ; Sand ; Simulation ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; State variable</subject><ispartof>Acta geotechnica, 2020-06, Vol.15 (6), p.1513-1531</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</citedby><cites>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</cites><orcidid>0000-0002-9281-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-019-00846-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-019-00846-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Fuentes, William</creatorcontrib><creatorcontrib>Wichtmann, Torsten</creatorcontrib><creatorcontrib>Gil, Melany</creatorcontrib><creatorcontrib>Lascarro, Carlos</creatorcontrib><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271,
1996
) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254,
2015
) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</description><subject>Anisotropy</subject><subject>Complex Fluids and Microfluidics</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Hypoplasticity</subject><subject>Liquefaction</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Offshore</subject><subject>Research Paper</subject><subject>Sand</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>State variable</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPBczRvTdrjGOoGAw_Tc0jSZGR0TU2yQ7-93Tr05ul54P_Cnx8Ajxg9Y4TES8KYMQQRriFCFeOQXIEZrjiGGFN6_fuT8hbcpbRHiFPC-Axs19sFXA196FuVsjc-D4UyJhy77Ltd4UIszGBab4pD0L49ydY5a3I6a63_PlqnTPahK1Sn2iH5dA9unGqTfbjcOfh6e_1cruDm4329XGygYqjKkFJtBaaaE621sY1zddkIrW3DK40ZpRUTjnPGVd0w6owQtLRVY43lwlhX0jl4mnr7GMYZKct9OMZxRJKElIgyXHM2usjkMjGkFK2TffQHFQeJkTzBkxM8OcKTZ3iSjCE6hdJo7nY2_lX_k_oBJ3Rz3A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Fuentes, William</creator><creator>Wichtmann, Torsten</creator><creator>Gil, Melany</creator><creator>Lascarro, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9281-3871</orcidid></search><sort><creationdate>20200601</creationdate><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><author>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Complex Fluids and Microfluidics</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Hypoplasticity</topic><topic>Liquefaction</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Offshore</topic><topic>Research Paper</topic><topic>Sand</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>State variable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuentes, William</creatorcontrib><creatorcontrib>Wichtmann, Torsten</creatorcontrib><creatorcontrib>Gil, Melany</creatorcontrib><creatorcontrib>Lascarro, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuentes, William</au><au>Wichtmann, Torsten</au><au>Gil, Melany</au><au>Lascarro, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>1513</spage><epage>1531</epage><pages>1513-1531</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271,
1996
) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254,
2015
) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-019-00846-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9281-3871</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2020-06, Vol.15 (6), p.1513-1531 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_2250341964 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Complex Fluids and Microfluidics Computer simulation Detection Engineering Finite element method Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Hypoplasticity Liquefaction Mathematical models Mobility Offshore Research Paper Sand Simulation Soft and Granular Matter Soil Science & Conservation Solid Mechanics State variable |
title | ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ISA-Hypoplasticity%20accounting%20for%20cyclic%20mobility%20effects%20for%20liquefaction%20analysis&rft.jtitle=Acta%20geotechnica&rft.au=Fuentes,%20William&rft.date=2020-06-01&rft.volume=15&rft.issue=6&rft.spage=1513&rft.epage=1531&rft.pages=1513-1531&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-019-00846-2&rft_dat=%3Cproquest_cross%3E2250341964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250341964&rft_id=info:pmid/&rfr_iscdi=true |