ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis

The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2020-06, Vol.15 (6), p.1513-1531
Hauptverfasser: Fuentes, William, Wichtmann, Torsten, Gil, Melany, Lascarro, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1531
container_issue 6
container_start_page 1513
container_title Acta geotechnica
container_volume 15
creator Fuentes, William
Wichtmann, Torsten
Gil, Melany
Lascarro, Carlos
description The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.
doi_str_mv 10.1007/s11440-019-00846-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2250341964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250341964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPBczRvTdrjGOoGAw_Tc0jSZGR0TU2yQ7-93Tr05ul54P_Cnx8Ajxg9Y4TES8KYMQQRriFCFeOQXIEZrjiGGFN6_fuT8hbcpbRHiFPC-Axs19sFXA196FuVsjc-D4UyJhy77Ltd4UIszGBab4pD0L49ydY5a3I6a63_PlqnTPahK1Sn2iH5dA9unGqTfbjcOfh6e_1cruDm4329XGygYqjKkFJtBaaaE621sY1zddkIrW3DK40ZpRUTjnPGVd0w6owQtLRVY43lwlhX0jl4mnr7GMYZKct9OMZxRJKElIgyXHM2usjkMjGkFK2TffQHFQeJkTzBkxM8OcKTZ3iSjCE6hdJo7nY2_lX_k_oBJ3Rz3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250341964</pqid></control><display><type>article</type><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</creator><creatorcontrib>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</creatorcontrib><description>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-019-00846-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Complex Fluids and Microfluidics ; Computer simulation ; Detection ; Engineering ; Finite element method ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulics ; Hypoplasticity ; Liquefaction ; Mathematical models ; Mobility ; Offshore ; Research Paper ; Sand ; Simulation ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; State variable</subject><ispartof>Acta geotechnica, 2020-06, Vol.15 (6), p.1513-1531</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</citedby><cites>FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</cites><orcidid>0000-0002-9281-3871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-019-00846-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-019-00846-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Fuentes, William</creatorcontrib><creatorcontrib>Wichtmann, Torsten</creatorcontrib><creatorcontrib>Gil, Melany</creatorcontrib><creatorcontrib>Lascarro, Carlos</creatorcontrib><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</description><subject>Anisotropy</subject><subject>Complex Fluids and Microfluidics</subject><subject>Computer simulation</subject><subject>Detection</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Hypoplasticity</subject><subject>Liquefaction</subject><subject>Mathematical models</subject><subject>Mobility</subject><subject>Offshore</subject><subject>Research Paper</subject><subject>Sand</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>State variable</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LwzAYx4MoOKdfwFPBczRvTdrjGOoGAw_Tc0jSZGR0TU2yQ7-93Tr05ul54P_Cnx8Ajxg9Y4TES8KYMQQRriFCFeOQXIEZrjiGGFN6_fuT8hbcpbRHiFPC-Axs19sFXA196FuVsjc-D4UyJhy77Ltd4UIszGBab4pD0L49ydY5a3I6a63_PlqnTPahK1Sn2iH5dA9unGqTfbjcOfh6e_1cruDm4329XGygYqjKkFJtBaaaE621sY1zddkIrW3DK40ZpRUTjnPGVd0w6owQtLRVY43lwlhX0jl4mnr7GMYZKct9OMZxRJKElIgyXHM2usjkMjGkFK2TffQHFQeJkTzBkxM8OcKTZ3iSjCE6hdJo7nY2_lX_k_oBJ3Rz3A</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Fuentes, William</creator><creator>Wichtmann, Torsten</creator><creator>Gil, Melany</creator><creator>Lascarro, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9281-3871</orcidid></search><sort><creationdate>20200601</creationdate><title>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</title><author>Fuentes, William ; Wichtmann, Torsten ; Gil, Melany ; Lascarro, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-33be713b62bbbcedff95d7bbed68b1433847f6646a9d43fc7735e8dece67cef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Complex Fluids and Microfluidics</topic><topic>Computer simulation</topic><topic>Detection</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Hypoplasticity</topic><topic>Liquefaction</topic><topic>Mathematical models</topic><topic>Mobility</topic><topic>Offshore</topic><topic>Research Paper</topic><topic>Sand</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>State variable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuentes, William</creatorcontrib><creatorcontrib>Wichtmann, Torsten</creatorcontrib><creatorcontrib>Gil, Melany</creatorcontrib><creatorcontrib>Lascarro, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuentes, William</au><au>Wichtmann, Torsten</au><au>Gil, Melany</au><au>Lascarro, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>15</volume><issue>6</issue><spage>1513</spage><epage>1531</epage><pages>1513-1531</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996 ) combined with the intergranular strain anisotropy by Fuentes and Triantafyllidis (Int J Numer Anal Meth Geomech 39: 1235–1254, 2015 ) is herein extended to account for cyclic mobility effects to allow for the simulation of liquefaction phenomena. The extension is based on the introduction of an additional state variable that permits the detection of cyclic mobility paths. The simulation capabilities of the model is compared with undrained triaxial tests of Karlsruhe fine sand. At the end, a finite element simulation of an offshore monopile embedded in sand, exposed to environmental forces from the Caribbean Sea, is constructed and analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-019-00846-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9281-3871</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2020-06, Vol.15 (6), p.1513-1531
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2250341964
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Complex Fluids and Microfluidics
Computer simulation
Detection
Engineering
Finite element method
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Hypoplasticity
Liquefaction
Mathematical models
Mobility
Offshore
Research Paper
Sand
Simulation
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
State variable
title ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ISA-Hypoplasticity%20accounting%20for%20cyclic%20mobility%20effects%20for%20liquefaction%20analysis&rft.jtitle=Acta%20geotechnica&rft.au=Fuentes,%20William&rft.date=2020-06-01&rft.volume=15&rft.issue=6&rft.spage=1513&rft.epage=1531&rft.pages=1513-1531&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-019-00846-2&rft_dat=%3Cproquest_cross%3E2250341964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250341964&rft_id=info:pmid/&rfr_iscdi=true