Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models

This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2019-07, Vol.62 (7), p.1094-1102
Hauptverfasser: Xu, JiHao, Xiao, MuBang, Ding, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 7
container_start_page 1094
container_title Science China. Technological sciences
container_volume 62
creator Xu, JiHao
Xiao, MuBang
Ding, Ye
description This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.
doi_str_mv 10.1007/s11431-018-9488-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249886537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249886537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz_UyPsugqKF70HNJ0smZpm5ppwf33ZqngybnMwLwf8DB2DeIWhKjuCCDPIBEgkzqXMoEztgJZ1gnUQpzHu6zypMpSuGQbooOIk8laQL5i7tW32Llhz_XQcuP7EQfSk_MD95Z_HmnCgOSIWx_4OODcx6fhOkzOOuN0x_uZTIfEG03Y8ujb6ZnI6YH37nuaA_L-VEFX7MLqjnDzu9fs4_HhffuUvLztnrf3L4nJoJySvGmbvCiNBSPLFoq0NKnUthFWp1aDNqjBNm1dYYEt5lVTaNFYmaIBqC2IbM1ultwx-K8ZaVIHP4chVqo0zWspyyKrogoWlQmeKKBVY3C9DkcFQp2gqgWqilDVCaqC6EkXD0XtsMfwl_y_6QePqHzB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249886537</pqid></control><display><type>article</type><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</creator><creatorcontrib>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</creatorcontrib><description>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-018-9488-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial muscles ; Compensation ; Engineering ; Hysteresis models ; Parameter identification ; Probabilistic models</subject><ispartof>Science China. Technological sciences, 2019-07, Vol.62 (7), p.1094-1102</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</citedby><cites>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-018-9488-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-018-9488-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Xu, JiHao</creatorcontrib><creatorcontrib>Xiao, MuBang</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</description><subject>Artificial muscles</subject><subject>Compensation</subject><subject>Engineering</subject><subject>Hysteresis models</subject><subject>Parameter identification</subject><subject>Probabilistic models</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz_UyPsugqKF70HNJ0smZpm5ppwf33ZqngybnMwLwf8DB2DeIWhKjuCCDPIBEgkzqXMoEztgJZ1gnUQpzHu6zypMpSuGQbooOIk8laQL5i7tW32Llhz_XQcuP7EQfSk_MD95Z_HmnCgOSIWx_4OODcx6fhOkzOOuN0x_uZTIfEG03Y8ujb6ZnI6YH37nuaA_L-VEFX7MLqjnDzu9fs4_HhffuUvLztnrf3L4nJoJySvGmbvCiNBSPLFoq0NKnUthFWp1aDNqjBNm1dYYEt5lVTaNFYmaIBqC2IbM1ultwx-K8ZaVIHP4chVqo0zWspyyKrogoWlQmeKKBVY3C9DkcFQp2gqgWqilDVCaqC6EkXD0XtsMfwl_y_6QePqHzB</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, JiHao</creator><creator>Xiao, MuBang</creator><creator>Ding, Ye</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><author>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial muscles</topic><topic>Compensation</topic><topic>Engineering</topic><topic>Hysteresis models</topic><topic>Parameter identification</topic><topic>Probabilistic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, JiHao</creatorcontrib><creatorcontrib>Xiao, MuBang</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, JiHao</au><au>Xiao, MuBang</au><au>Ding, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>62</volume><issue>7</issue><spage>1094</spage><epage>1102</epage><pages>1094-1102</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-018-9488-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2019-07, Vol.62 (7), p.1094-1102
issn 1674-7321
1869-1900
language eng
recordid cdi_proquest_journals_2249886537
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Artificial muscles
Compensation
Engineering
Hysteresis models
Parameter identification
Probabilistic models
title Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20compensation%20of%20hysteresis%20for%20pneumatic%20artificial%20muscles%20based%20on%20Gaussian%20mixture%20models&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Xu,%20JiHao&rft.date=2019-07-01&rft.volume=62&rft.issue=7&rft.spage=1094&rft.epage=1102&rft.pages=1094-1102&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-018-9488-1&rft_dat=%3Cproquest_cross%3E2249886537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249886537&rft_id=info:pmid/&rfr_iscdi=true