Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models
This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2019-07, Vol.62 (7), p.1094-1102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1102 |
---|---|
container_issue | 7 |
container_start_page | 1094 |
container_title | Science China. Technological sciences |
container_volume | 62 |
creator | Xu, JiHao Xiao, MuBang Ding, Ye |
description | This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments. |
doi_str_mv | 10.1007/s11431-018-9488-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249886537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249886537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz_UyPsugqKF70HNJ0smZpm5ppwf33ZqngybnMwLwf8DB2DeIWhKjuCCDPIBEgkzqXMoEztgJZ1gnUQpzHu6zypMpSuGQbooOIk8laQL5i7tW32Llhz_XQcuP7EQfSk_MD95Z_HmnCgOSIWx_4OODcx6fhOkzOOuN0x_uZTIfEG03Y8ujb6ZnI6YH37nuaA_L-VEFX7MLqjnDzu9fs4_HhffuUvLztnrf3L4nJoJySvGmbvCiNBSPLFoq0NKnUthFWp1aDNqjBNm1dYYEt5lVTaNFYmaIBqC2IbM1ultwx-K8ZaVIHP4chVqo0zWspyyKrogoWlQmeKKBVY3C9DkcFQp2gqgWqilDVCaqC6EkXD0XtsMfwl_y_6QePqHzB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249886537</pqid></control><display><type>article</type><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</creator><creatorcontrib>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</creatorcontrib><description>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-018-9488-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Artificial muscles ; Compensation ; Engineering ; Hysteresis models ; Parameter identification ; Probabilistic models</subject><ispartof>Science China. Technological sciences, 2019-07, Vol.62 (7), p.1094-1102</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</citedby><cites>FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-018-9488-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-018-9488-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Xu, JiHao</creatorcontrib><creatorcontrib>Xiao, MuBang</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</description><subject>Artificial muscles</subject><subject>Compensation</subject><subject>Engineering</subject><subject>Hysteresis models</subject><subject>Parameter identification</subject><subject>Probabilistic models</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPFcz_UyPsugqKF70HNJ0smZpm5ppwf33ZqngybnMwLwf8DB2DeIWhKjuCCDPIBEgkzqXMoEztgJZ1gnUQpzHu6zypMpSuGQbooOIk8laQL5i7tW32Llhz_XQcuP7EQfSk_MD95Z_HmnCgOSIWx_4OODcx6fhOkzOOuN0x_uZTIfEG03Y8ujb6ZnI6YH37nuaA_L-VEFX7MLqjnDzu9fs4_HhffuUvLztnrf3L4nJoJySvGmbvCiNBSPLFoq0NKnUthFWp1aDNqjBNm1dYYEt5lVTaNFYmaIBqC2IbM1ultwx-K8ZaVIHP4chVqo0zWspyyKrogoWlQmeKKBVY3C9DkcFQp2gqgWqilDVCaqC6EkXD0XtsMfwl_y_6QePqHzB</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, JiHao</creator><creator>Xiao, MuBang</creator><creator>Ding, Ye</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</title><author>Xu, JiHao ; Xiao, MuBang ; Ding, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4bdb456cf1c86d1526c28afb0fa2fa1acea1fbd97e5ede47b5a0bf82ec119f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial muscles</topic><topic>Compensation</topic><topic>Engineering</topic><topic>Hysteresis models</topic><topic>Parameter identification</topic><topic>Probabilistic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, JiHao</creatorcontrib><creatorcontrib>Xiao, MuBang</creatorcontrib><creatorcontrib>Ding, Ye</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, JiHao</au><au>Xiao, MuBang</au><au>Ding, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>62</volume><issue>7</issue><spage>1094</spage><epage>1102</epage><pages>1094-1102</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>This paper presents a new data-driven model of length-pressure hysteresis of pneumatic artificial muscles (PAMs) based on Gaussian mixture models (GMMs). By ignoring the high-order dynamics, the hysteresis of PAMs is modeled as a first-order nonlinear dynamical system based on GMMs, and inversion of the model is subsequently derived. Several verification experiments are conducted. Firstly, parameters of the model are identified under low-frequency triangle-wave pressure excitations. Then, pressure signals with different amplitudes, shapes and frequencies are applied to the PAM to test the prediction performance of the model. The proposed model shows advantages in identification efficiency and prediction precision compared with a generalized Prandtl-Ishlinskii (GPI) model and a modified generalized Prandtl-Ishlinskii (MGPI) model. Finally, the effectiveness of the inverse model is demonstrated by implementing the feedforward hysteresis compensation in trajectory tracking experiments.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-018-9488-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2019-07, Vol.62 (7), p.1094-1102 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_2249886537 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Artificial muscles Compensation Engineering Hysteresis models Parameter identification Probabilistic models |
title | Modeling and compensation of hysteresis for pneumatic artificial muscles based on Gaussian mixture models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20compensation%20of%20hysteresis%20for%20pneumatic%20artificial%20muscles%20based%20on%20Gaussian%20mixture%20models&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Xu,%20JiHao&rft.date=2019-07-01&rft.volume=62&rft.issue=7&rft.spage=1094&rft.epage=1102&rft.pages=1094-1102&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-018-9488-1&rft_dat=%3Cproquest_cross%3E2249886537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249886537&rft_id=info:pmid/&rfr_iscdi=true |