Surface modification with polyallylamines for adhesion of biopolymers and cells
Cationic polymers with NH2-groups were used for modification of charged and uncharged surfaces of planar slides, wells of plates, and spherical nanoparticles. Our study was aimed at development of a simple functionalization method of plain surfaces and colloids of different chemical compositions for...
Gespeichert in:
Veröffentlicht in: | International journal of adhesion and adhesives 2019-07, Vol.92, p.125-132 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | International journal of adhesion and adhesives |
container_volume | 92 |
creator | Morozova, Olga V. Levchenko, Olga A. Cherpakova, Zlata A. Prokhorov, Valery V. Barinov, Nikolay A. Obraztsova, Ekaterina A. Belova, Aleksandra M. Prusakov, Kirill A. Aldarov, Konstantin G. Basmanov, Dmitry V. Lavrenova, Victoria N. Pavlova, Elizaveta R. Bagrov, Dmitry V. Lazarev, Vassili N. Klinov, Dmitry V. |
description | Cationic polymers with NH2-groups were used for modification of charged and uncharged surfaces of planar slides, wells of plates, and spherical nanoparticles. Our study was aimed at development of a simple functionalization method of plain surfaces and colloids of different chemical compositions for adhesion of native biopolymers, including proteins, and viable bacterial and eukaryotic cells. Poly(allylamine)s (pAA) and polylysines (pLys) of different molecular weights spontaneously formed interfaces convenient for adhesion of biopolymers and cells. Thickness of the pAA 65 kDa layer ∼1.5–2 nm was measured by two methods: 1) atomic force microscopy (AFM) on mica slides and 2) registration of the long range surface optical waves excitation angle and the critical angle of total internal reflection from the liquid on a photonic crystal surface by using the biosensor. The sorption capacity of 0.1 mg/ml pAA 65 kDa exceeded the values of other polyamines at different concentrations. Physisorption of proteins on pAA layer was reversible and up to 70% of attached proteins could be removed by subsequent washes. Additional treatment with glutaraldehyde (GA) provided stable chemical cross-linking of the compounds containing primary NH2-groups with aminated surfaces. The proteins immobilized on the pAA-covered surface retained their ability to bind with specific monoclonal and polyclonal antibodies. Bacterial cells after adhesion on pAA65-covered surfaces maintained their morphology, could reproduce and express the green fluorescent protein (gfp) gene under control of the inducible lac promoter. Eukaryotic cells of human and mammalian origin also remained viable on pAA-treated slides as proven by their staining with fluorescent dyes and cell divisions until confluent monolayers. Mammalian cells could not attach onto silicon wafers but grew on pAA interface of the silicon slides until confluent monolayers. Thus, surface modification with polyallylamines provides adhesion of native biopolymers and living cells. |
doi_str_mv | 10.1016/j.ijadhadh.2019.03.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249737198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143749619300776</els_id><sourcerecordid>2249737198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-41c62597717d1c5caf35ae79ad6aa01c464f45cf298667d2d1232d1573ee342f3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQKuZ8xNMklnpxRfUOhCXYeYB80wM6nJVOm_N6W6Fi73br5zDvcgdA2kBgLitqtDp-2mTE0JtDVhNQF2gmawkG1FgMpTNCPAWSV5K87RRc4dISAJZzO0ft0lr43DQ7TBB6OnEEf8HaYN3sZ-r_t-3-shjC5jHxMuIS4fiOjxR4gHZHApYz1abFzf50t05nWf3dXvnaP3x4e35XO1Wj-9LO9XlWFSThUHI2jTSgnSgmmM9qzRTrbaCq0JGC64543xtF0IIS21QFlZjWTOMU49m6Obo-82xc-dy5Pq4i6NJVJRylvJJLSLQokjZVLMOTmvtikMOu0VEHUoT3Xqrzx1KE8Rpkp5RXh3FLryw1dwSWUT3GicDcmZSdkY_rP4AUQWe8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249737198</pqid></control><display><type>article</type><title>Surface modification with polyallylamines for adhesion of biopolymers and cells</title><source>Elsevier ScienceDirect Journals</source><creator>Morozova, Olga V. ; Levchenko, Olga A. ; Cherpakova, Zlata A. ; Prokhorov, Valery V. ; Barinov, Nikolay A. ; Obraztsova, Ekaterina A. ; Belova, Aleksandra M. ; Prusakov, Kirill A. ; Aldarov, Konstantin G. ; Basmanov, Dmitry V. ; Lavrenova, Victoria N. ; Pavlova, Elizaveta R. ; Bagrov, Dmitry V. ; Lazarev, Vassili N. ; Klinov, Dmitry V.</creator><creatorcontrib>Morozova, Olga V. ; Levchenko, Olga A. ; Cherpakova, Zlata A. ; Prokhorov, Valery V. ; Barinov, Nikolay A. ; Obraztsova, Ekaterina A. ; Belova, Aleksandra M. ; Prusakov, Kirill A. ; Aldarov, Konstantin G. ; Basmanov, Dmitry V. ; Lavrenova, Victoria N. ; Pavlova, Elizaveta R. ; Bagrov, Dmitry V. ; Lazarev, Vassili N. ; Klinov, Dmitry V.</creatorcontrib><description>Cationic polymers with NH2-groups were used for modification of charged and uncharged surfaces of planar slides, wells of plates, and spherical nanoparticles. Our study was aimed at development of a simple functionalization method of plain surfaces and colloids of different chemical compositions for adhesion of native biopolymers, including proteins, and viable bacterial and eukaryotic cells. Poly(allylamine)s (pAA) and polylysines (pLys) of different molecular weights spontaneously formed interfaces convenient for adhesion of biopolymers and cells. Thickness of the pAA 65 kDa layer ∼1.5–2 nm was measured by two methods: 1) atomic force microscopy (AFM) on mica slides and 2) registration of the long range surface optical waves excitation angle and the critical angle of total internal reflection from the liquid on a photonic crystal surface by using the biosensor. The sorption capacity of 0.1 mg/ml pAA 65 kDa exceeded the values of other polyamines at different concentrations. Physisorption of proteins on pAA layer was reversible and up to 70% of attached proteins could be removed by subsequent washes. Additional treatment with glutaraldehyde (GA) provided stable chemical cross-linking of the compounds containing primary NH2-groups with aminated surfaces. The proteins immobilized on the pAA-covered surface retained their ability to bind with specific monoclonal and polyclonal antibodies. Bacterial cells after adhesion on pAA65-covered surfaces maintained their morphology, could reproduce and express the green fluorescent protein (gfp) gene under control of the inducible lac promoter. Eukaryotic cells of human and mammalian origin also remained viable on pAA-treated slides as proven by their staining with fluorescent dyes and cell divisions until confluent monolayers. Mammalian cells could not attach onto silicon wafers but grew on pAA interface of the silicon slides until confluent monolayers. Thus, surface modification with polyallylamines provides adhesion of native biopolymers and living cells.</description><identifier>ISSN: 0143-7496</identifier><identifier>EISSN: 1879-0127</identifier><identifier>DOI: 10.1016/j.ijadhadh.2019.03.013</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Water based ; Adhesion ; Angle of reflection ; Antibodies ; Atomic force microscopy ; B. Surface roughness/morphology ; Biopolymers ; Biosensors ; C. Atomic force microscopy ; Cationic polymerization ; Chemical composition ; Chemical compounds ; Colloid chemistry ; Critical angle ; Crosslinking ; Crystal surfaces ; D. Adhesion in surgery and medicine ; Fluorescent dyes ; Glutaraldehyde ; Mammals ; Measurement methods ; Monolayers ; Morphology ; Nanoparticles ; Organic chemistry ; Photonic crystals ; Polyallylamines ; Polyamines ; Proteins ; Silicon ; Silicon wafers</subject><ispartof>International journal of adhesion and adhesives, 2019-07, Vol.92, p.125-132</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-41c62597717d1c5caf35ae79ad6aa01c464f45cf298667d2d1232d1573ee342f3</citedby><cites>FETCH-LOGICAL-c377t-41c62597717d1c5caf35ae79ad6aa01c464f45cf298667d2d1232d1573ee342f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0143749619300776$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Morozova, Olga V.</creatorcontrib><creatorcontrib>Levchenko, Olga A.</creatorcontrib><creatorcontrib>Cherpakova, Zlata A.</creatorcontrib><creatorcontrib>Prokhorov, Valery V.</creatorcontrib><creatorcontrib>Barinov, Nikolay A.</creatorcontrib><creatorcontrib>Obraztsova, Ekaterina A.</creatorcontrib><creatorcontrib>Belova, Aleksandra M.</creatorcontrib><creatorcontrib>Prusakov, Kirill A.</creatorcontrib><creatorcontrib>Aldarov, Konstantin G.</creatorcontrib><creatorcontrib>Basmanov, Dmitry V.</creatorcontrib><creatorcontrib>Lavrenova, Victoria N.</creatorcontrib><creatorcontrib>Pavlova, Elizaveta R.</creatorcontrib><creatorcontrib>Bagrov, Dmitry V.</creatorcontrib><creatorcontrib>Lazarev, Vassili N.</creatorcontrib><creatorcontrib>Klinov, Dmitry V.</creatorcontrib><title>Surface modification with polyallylamines for adhesion of biopolymers and cells</title><title>International journal of adhesion and adhesives</title><description>Cationic polymers with NH2-groups were used for modification of charged and uncharged surfaces of planar slides, wells of plates, and spherical nanoparticles. Our study was aimed at development of a simple functionalization method of plain surfaces and colloids of different chemical compositions for adhesion of native biopolymers, including proteins, and viable bacterial and eukaryotic cells. Poly(allylamine)s (pAA) and polylysines (pLys) of different molecular weights spontaneously formed interfaces convenient for adhesion of biopolymers and cells. Thickness of the pAA 65 kDa layer ∼1.5–2 nm was measured by two methods: 1) atomic force microscopy (AFM) on mica slides and 2) registration of the long range surface optical waves excitation angle and the critical angle of total internal reflection from the liquid on a photonic crystal surface by using the biosensor. The sorption capacity of 0.1 mg/ml pAA 65 kDa exceeded the values of other polyamines at different concentrations. Physisorption of proteins on pAA layer was reversible and up to 70% of attached proteins could be removed by subsequent washes. Additional treatment with glutaraldehyde (GA) provided stable chemical cross-linking of the compounds containing primary NH2-groups with aminated surfaces. The proteins immobilized on the pAA-covered surface retained their ability to bind with specific monoclonal and polyclonal antibodies. Bacterial cells after adhesion on pAA65-covered surfaces maintained their morphology, could reproduce and express the green fluorescent protein (gfp) gene under control of the inducible lac promoter. Eukaryotic cells of human and mammalian origin also remained viable on pAA-treated slides as proven by their staining with fluorescent dyes and cell divisions until confluent monolayers. Mammalian cells could not attach onto silicon wafers but grew on pAA interface of the silicon slides until confluent monolayers. Thus, surface modification with polyallylamines provides adhesion of native biopolymers and living cells.</description><subject>A. Water based</subject><subject>Adhesion</subject><subject>Angle of reflection</subject><subject>Antibodies</subject><subject>Atomic force microscopy</subject><subject>B. Surface roughness/morphology</subject><subject>Biopolymers</subject><subject>Biosensors</subject><subject>C. Atomic force microscopy</subject><subject>Cationic polymerization</subject><subject>Chemical composition</subject><subject>Chemical compounds</subject><subject>Colloid chemistry</subject><subject>Critical angle</subject><subject>Crosslinking</subject><subject>Crystal surfaces</subject><subject>D. Adhesion in surgery and medicine</subject><subject>Fluorescent dyes</subject><subject>Glutaraldehyde</subject><subject>Mammals</subject><subject>Measurement methods</subject><subject>Monolayers</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Photonic crystals</subject><subject>Polyallylamines</subject><subject>Polyamines</subject><subject>Proteins</subject><subject>Silicon</subject><subject>Silicon wafers</subject><issn>0143-7496</issn><issn>1879-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QQKuZ8xNMklnpxRfUOhCXYeYB80wM6nJVOm_N6W6Fi73br5zDvcgdA2kBgLitqtDp-2mTE0JtDVhNQF2gmawkG1FgMpTNCPAWSV5K87RRc4dISAJZzO0ft0lr43DQ7TBB6OnEEf8HaYN3sZ-r_t-3-shjC5jHxMuIS4fiOjxR4gHZHApYz1abFzf50t05nWf3dXvnaP3x4e35XO1Wj-9LO9XlWFSThUHI2jTSgnSgmmM9qzRTrbaCq0JGC64543xtF0IIS21QFlZjWTOMU49m6Obo-82xc-dy5Pq4i6NJVJRylvJJLSLQokjZVLMOTmvtikMOu0VEHUoT3Xqrzx1KE8Rpkp5RXh3FLryw1dwSWUT3GicDcmZSdkY_rP4AUQWe8M</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Morozova, Olga V.</creator><creator>Levchenko, Olga A.</creator><creator>Cherpakova, Zlata A.</creator><creator>Prokhorov, Valery V.</creator><creator>Barinov, Nikolay A.</creator><creator>Obraztsova, Ekaterina A.</creator><creator>Belova, Aleksandra M.</creator><creator>Prusakov, Kirill A.</creator><creator>Aldarov, Konstantin G.</creator><creator>Basmanov, Dmitry V.</creator><creator>Lavrenova, Victoria N.</creator><creator>Pavlova, Elizaveta R.</creator><creator>Bagrov, Dmitry V.</creator><creator>Lazarev, Vassili N.</creator><creator>Klinov, Dmitry V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20190701</creationdate><title>Surface modification with polyallylamines for adhesion of biopolymers and cells</title><author>Morozova, Olga V. ; Levchenko, Olga A. ; Cherpakova, Zlata A. ; Prokhorov, Valery V. ; Barinov, Nikolay A. ; Obraztsova, Ekaterina A. ; Belova, Aleksandra M. ; Prusakov, Kirill A. ; Aldarov, Konstantin G. ; Basmanov, Dmitry V. ; Lavrenova, Victoria N. ; Pavlova, Elizaveta R. ; Bagrov, Dmitry V. ; Lazarev, Vassili N. ; Klinov, Dmitry V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-41c62597717d1c5caf35ae79ad6aa01c464f45cf298667d2d1232d1573ee342f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Water based</topic><topic>Adhesion</topic><topic>Angle of reflection</topic><topic>Antibodies</topic><topic>Atomic force microscopy</topic><topic>B. Surface roughness/morphology</topic><topic>Biopolymers</topic><topic>Biosensors</topic><topic>C. Atomic force microscopy</topic><topic>Cationic polymerization</topic><topic>Chemical composition</topic><topic>Chemical compounds</topic><topic>Colloid chemistry</topic><topic>Critical angle</topic><topic>Crosslinking</topic><topic>Crystal surfaces</topic><topic>D. Adhesion in surgery and medicine</topic><topic>Fluorescent dyes</topic><topic>Glutaraldehyde</topic><topic>Mammals</topic><topic>Measurement methods</topic><topic>Monolayers</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Photonic crystals</topic><topic>Polyallylamines</topic><topic>Polyamines</topic><topic>Proteins</topic><topic>Silicon</topic><topic>Silicon wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozova, Olga V.</creatorcontrib><creatorcontrib>Levchenko, Olga A.</creatorcontrib><creatorcontrib>Cherpakova, Zlata A.</creatorcontrib><creatorcontrib>Prokhorov, Valery V.</creatorcontrib><creatorcontrib>Barinov, Nikolay A.</creatorcontrib><creatorcontrib>Obraztsova, Ekaterina A.</creatorcontrib><creatorcontrib>Belova, Aleksandra M.</creatorcontrib><creatorcontrib>Prusakov, Kirill A.</creatorcontrib><creatorcontrib>Aldarov, Konstantin G.</creatorcontrib><creatorcontrib>Basmanov, Dmitry V.</creatorcontrib><creatorcontrib>Lavrenova, Victoria N.</creatorcontrib><creatorcontrib>Pavlova, Elizaveta R.</creatorcontrib><creatorcontrib>Bagrov, Dmitry V.</creatorcontrib><creatorcontrib>Lazarev, Vassili N.</creatorcontrib><creatorcontrib>Klinov, Dmitry V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of adhesion and adhesives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozova, Olga V.</au><au>Levchenko, Olga A.</au><au>Cherpakova, Zlata A.</au><au>Prokhorov, Valery V.</au><au>Barinov, Nikolay A.</au><au>Obraztsova, Ekaterina A.</au><au>Belova, Aleksandra M.</au><au>Prusakov, Kirill A.</au><au>Aldarov, Konstantin G.</au><au>Basmanov, Dmitry V.</au><au>Lavrenova, Victoria N.</au><au>Pavlova, Elizaveta R.</au><au>Bagrov, Dmitry V.</au><au>Lazarev, Vassili N.</au><au>Klinov, Dmitry V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface modification with polyallylamines for adhesion of biopolymers and cells</atitle><jtitle>International journal of adhesion and adhesives</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>92</volume><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>0143-7496</issn><eissn>1879-0127</eissn><abstract>Cationic polymers with NH2-groups were used for modification of charged and uncharged surfaces of planar slides, wells of plates, and spherical nanoparticles. Our study was aimed at development of a simple functionalization method of plain surfaces and colloids of different chemical compositions for adhesion of native biopolymers, including proteins, and viable bacterial and eukaryotic cells. Poly(allylamine)s (pAA) and polylysines (pLys) of different molecular weights spontaneously formed interfaces convenient for adhesion of biopolymers and cells. Thickness of the pAA 65 kDa layer ∼1.5–2 nm was measured by two methods: 1) atomic force microscopy (AFM) on mica slides and 2) registration of the long range surface optical waves excitation angle and the critical angle of total internal reflection from the liquid on a photonic crystal surface by using the biosensor. The sorption capacity of 0.1 mg/ml pAA 65 kDa exceeded the values of other polyamines at different concentrations. Physisorption of proteins on pAA layer was reversible and up to 70% of attached proteins could be removed by subsequent washes. Additional treatment with glutaraldehyde (GA) provided stable chemical cross-linking of the compounds containing primary NH2-groups with aminated surfaces. The proteins immobilized on the pAA-covered surface retained their ability to bind with specific monoclonal and polyclonal antibodies. Bacterial cells after adhesion on pAA65-covered surfaces maintained their morphology, could reproduce and express the green fluorescent protein (gfp) gene under control of the inducible lac promoter. Eukaryotic cells of human and mammalian origin also remained viable on pAA-treated slides as proven by their staining with fluorescent dyes and cell divisions until confluent monolayers. Mammalian cells could not attach onto silicon wafers but grew on pAA interface of the silicon slides until confluent monolayers. Thus, surface modification with polyallylamines provides adhesion of native biopolymers and living cells.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijadhadh.2019.03.013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-7496 |
ispartof | International journal of adhesion and adhesives, 2019-07, Vol.92, p.125-132 |
issn | 0143-7496 1879-0127 |
language | eng |
recordid | cdi_proquest_journals_2249737198 |
source | Elsevier ScienceDirect Journals |
subjects | A. Water based Adhesion Angle of reflection Antibodies Atomic force microscopy B. Surface roughness/morphology Biopolymers Biosensors C. Atomic force microscopy Cationic polymerization Chemical composition Chemical compounds Colloid chemistry Critical angle Crosslinking Crystal surfaces D. Adhesion in surgery and medicine Fluorescent dyes Glutaraldehyde Mammals Measurement methods Monolayers Morphology Nanoparticles Organic chemistry Photonic crystals Polyallylamines Polyamines Proteins Silicon Silicon wafers |
title | Surface modification with polyallylamines for adhesion of biopolymers and cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20modification%20with%20polyallylamines%20for%20adhesion%20of%20biopolymers%20and%20cells&rft.jtitle=International%20journal%20of%20adhesion%20and%20adhesives&rft.au=Morozova,%20Olga%20V.&rft.date=2019-07-01&rft.volume=92&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=0143-7496&rft.eissn=1879-0127&rft_id=info:doi/10.1016/j.ijadhadh.2019.03.013&rft_dat=%3Cproquest_cross%3E2249737198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249737198&rft_id=info:pmid/&rft_els_id=S0143749619300776&rfr_iscdi=true |