High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent

Growing population and demand for plastics and synthetic fluids in climate friendly environment sets the unprecedented industrial challenge to increase production of clean chemical precursors (e.g., ethylene) with reduced energy consumption and CO2 foot print. The production of polymer‐grade ethylen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2019-08, Vol.65 (8), p.n/a
Hauptverfasser: Martins, Vanessa F. D., Ribeiro, Ana M., Kortunov, Pavel, Ferreira, Alexandre, Rodrigues, Alírio E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title AIChE journal
container_volume 65
creator Martins, Vanessa F. D.
Ribeiro, Ana M.
Kortunov, Pavel
Ferreira, Alexandre
Rodrigues, Alírio E.
description Growing population and demand for plastics and synthetic fluids in climate friendly environment sets the unprecedented industrial challenge to increase production of clean chemical precursors (e.g., ethylene) with reduced energy consumption and CO2 foot print. The production of polymer‐grade ethylene (>99.9%) from steam cracked gas or oil relies on a cascade of energy intensive distillations of gases. Therefore, in this work two simulated moving bed (SMB) cycles were employed to separate mixtures containing of about 40% of ethane and 60% of ethylene on zeolitic imidazole framework‐8 granulates. The separation cycles were performed with two desorbents with different relative adsorption strength. In the experiment, with carbon dioxide as desorbent, ethylene was obtained with 99.6% purity and 94.2% recovery, while in the experiment using propane as desorbent only 77.1% of ethylene is recovered with a purity of 82.7%. Indeed, it can be concluded that when CO2 is used as desorbent, the obtained productivity is higher. The mathematical SMB model and regions of separation were determined for each desorbent based on experimental data.
doi_str_mv 10.1002/aic.16619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249682167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249682167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3349-dafd7036b8ccf348bbba95a415e63fb3f6178d0afafe3ed6439382938366e1ae3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2nHiJGNVAa1UiQUWFnNOLq2rNAl2AsrGI_CMPAkuYWU4_Xe_vruTfkKuOZtxxsI5mHzGpeTZCZnwOEqCOGPxKZkwxnjgDX5OLpzb-ylM0nBCXldmu6Ntb003UOx2UOPcy1BhjdRhCxY609RUD3QLjrY7cN43h76CDgt6aN5NvaXat707di_r--_Pr5RC4Rqrse4uyVkJlcOrP52S5_u7p-Uq2Dw-rJeLTZALEWVBAWWRMCF1mueliFKtNWQxRDxGKUotSsmTtGBQQokCCxmJTKShLyElckAxJTfj3dY2bz26Tu2b3tb-pQrDKJNpyGXiqduRym3jnMVStdYcwA6KM3UMUPkA1W-Anp2P7IepcPgfVIv1ctz4AZ3Dc3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249682167</pqid></control><display><type>article</type><title>High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent</title><source>Wiley-Blackwell Journals</source><creator>Martins, Vanessa F. D. ; Ribeiro, Ana M. ; Kortunov, Pavel ; Ferreira, Alexandre ; Rodrigues, Alírio E.</creator><creatorcontrib>Martins, Vanessa F. D. ; Ribeiro, Ana M. ; Kortunov, Pavel ; Ferreira, Alexandre ; Rodrigues, Alírio E.</creatorcontrib><description>Growing population and demand for plastics and synthetic fluids in climate friendly environment sets the unprecedented industrial challenge to increase production of clean chemical precursors (e.g., ethylene) with reduced energy consumption and CO2 foot print. The production of polymer‐grade ethylene (&gt;99.9%) from steam cracked gas or oil relies on a cascade of energy intensive distillations of gases. Therefore, in this work two simulated moving bed (SMB) cycles were employed to separate mixtures containing of about 40% of ethane and 60% of ethylene on zeolitic imidazole framework‐8 granulates. The separation cycles were performed with two desorbents with different relative adsorption strength. In the experiment, with carbon dioxide as desorbent, ethylene was obtained with 99.6% purity and 94.2% recovery, while in the experiment using propane as desorbent only 77.1% of ethylene is recovered with a purity of 82.7%. Indeed, it can be concluded that when CO2 is used as desorbent, the obtained productivity is higher. The mathematical SMB model and regions of separation were determined for each desorbent based on experimental data.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16619</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>adsorption ; Carbon dioxide ; Clean energy ; Computational fluid dynamics ; Computer simulation ; Energy consumption ; Ethane ; Ethylene ; gas phase SMB ; Gases ; Granulation ; Imidazole ; Moving beds ; Organic chemistry ; Polymers ; Purity ; Separation ; Steam ; Vapor phases ; ZIF‐8</subject><ispartof>AIChE journal, 2019-08, Vol.65 (8), p.n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3349-dafd7036b8ccf348bbba95a415e63fb3f6178d0afafe3ed6439382938366e1ae3</citedby><cites>FETCH-LOGICAL-c3349-dafd7036b8ccf348bbba95a415e63fb3f6178d0afafe3ed6439382938366e1ae3</cites><orcidid>0000-0002-6746-8973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.16619$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.16619$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Martins, Vanessa F. D.</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><creatorcontrib>Kortunov, Pavel</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><title>High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent</title><title>AIChE journal</title><description>Growing population and demand for plastics and synthetic fluids in climate friendly environment sets the unprecedented industrial challenge to increase production of clean chemical precursors (e.g., ethylene) with reduced energy consumption and CO2 foot print. The production of polymer‐grade ethylene (&gt;99.9%) from steam cracked gas or oil relies on a cascade of energy intensive distillations of gases. Therefore, in this work two simulated moving bed (SMB) cycles were employed to separate mixtures containing of about 40% of ethane and 60% of ethylene on zeolitic imidazole framework‐8 granulates. The separation cycles were performed with two desorbents with different relative adsorption strength. In the experiment, with carbon dioxide as desorbent, ethylene was obtained with 99.6% purity and 94.2% recovery, while in the experiment using propane as desorbent only 77.1% of ethylene is recovered with a purity of 82.7%. Indeed, it can be concluded that when CO2 is used as desorbent, the obtained productivity is higher. The mathematical SMB model and regions of separation were determined for each desorbent based on experimental data.</description><subject>adsorption</subject><subject>Carbon dioxide</subject><subject>Clean energy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Energy consumption</subject><subject>Ethane</subject><subject>Ethylene</subject><subject>gas phase SMB</subject><subject>Gases</subject><subject>Granulation</subject><subject>Imidazole</subject><subject>Moving beds</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Purity</subject><subject>Separation</subject><subject>Steam</subject><subject>Vapor phases</subject><subject>ZIF‐8</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUw8AaWmBjS2nHiJGNVAa1UiQUWFnNOLq2rNAl2AsrGI_CMPAkuYWU4_Xe_vruTfkKuOZtxxsI5mHzGpeTZCZnwOEqCOGPxKZkwxnjgDX5OLpzb-ylM0nBCXldmu6Ntb003UOx2UOPcy1BhjdRhCxY609RUD3QLjrY7cN43h76CDgt6aN5NvaXat707di_r--_Pr5RC4Rqrse4uyVkJlcOrP52S5_u7p-Uq2Dw-rJeLTZALEWVBAWWRMCF1mueliFKtNWQxRDxGKUotSsmTtGBQQokCCxmJTKShLyElckAxJTfj3dY2bz26Tu2b3tb-pQrDKJNpyGXiqduRym3jnMVStdYcwA6KM3UMUPkA1W-Anp2P7IepcPgfVIv1ctz4AZ3Dc3Y</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Martins, Vanessa F. D.</creator><creator>Ribeiro, Ana M.</creator><creator>Kortunov, Pavel</creator><creator>Ferreira, Alexandre</creator><creator>Rodrigues, Alírio E.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6746-8973</orcidid></search><sort><creationdate>201908</creationdate><title>High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent</title><author>Martins, Vanessa F. D. ; Ribeiro, Ana M. ; Kortunov, Pavel ; Ferreira, Alexandre ; Rodrigues, Alírio E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3349-dafd7036b8ccf348bbba95a415e63fb3f6178d0afafe3ed6439382938366e1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adsorption</topic><topic>Carbon dioxide</topic><topic>Clean energy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Energy consumption</topic><topic>Ethane</topic><topic>Ethylene</topic><topic>gas phase SMB</topic><topic>Gases</topic><topic>Granulation</topic><topic>Imidazole</topic><topic>Moving beds</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Purity</topic><topic>Separation</topic><topic>Steam</topic><topic>Vapor phases</topic><topic>ZIF‐8</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Vanessa F. D.</creatorcontrib><creatorcontrib>Ribeiro, Ana M.</creatorcontrib><creatorcontrib>Kortunov, Pavel</creatorcontrib><creatorcontrib>Ferreira, Alexandre</creatorcontrib><creatorcontrib>Rodrigues, Alírio E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Vanessa F. D.</au><au>Ribeiro, Ana M.</au><au>Kortunov, Pavel</au><au>Ferreira, Alexandre</au><au>Rodrigues, Alírio E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent</atitle><jtitle>AIChE journal</jtitle><date>2019-08</date><risdate>2019</risdate><volume>65</volume><issue>8</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Growing population and demand for plastics and synthetic fluids in climate friendly environment sets the unprecedented industrial challenge to increase production of clean chemical precursors (e.g., ethylene) with reduced energy consumption and CO2 foot print. The production of polymer‐grade ethylene (&gt;99.9%) from steam cracked gas or oil relies on a cascade of energy intensive distillations of gases. Therefore, in this work two simulated moving bed (SMB) cycles were employed to separate mixtures containing of about 40% of ethane and 60% of ethylene on zeolitic imidazole framework‐8 granulates. The separation cycles were performed with two desorbents with different relative adsorption strength. In the experiment, with carbon dioxide as desorbent, ethylene was obtained with 99.6% purity and 94.2% recovery, while in the experiment using propane as desorbent only 77.1% of ethylene is recovered with a purity of 82.7%. Indeed, it can be concluded that when CO2 is used as desorbent, the obtained productivity is higher. The mathematical SMB model and regions of separation were determined for each desorbent based on experimental data.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.16619</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6746-8973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2019-08, Vol.65 (8), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2249682167
source Wiley-Blackwell Journals
subjects adsorption
Carbon dioxide
Clean energy
Computational fluid dynamics
Computer simulation
Energy consumption
Ethane
Ethylene
gas phase SMB
Gases
Granulation
Imidazole
Moving beds
Organic chemistry
Polymers
Purity
Separation
Steam
Vapor phases
ZIF‐8
title High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF‐8 adsorbent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20purity%20ethane/ethylene%20separation%20by%20gas%20phase%20simulated%20moving%20bed%20using%20ZIF%E2%80%908%20adsorbent&rft.jtitle=AIChE%20journal&rft.au=Martins,%20Vanessa%20F.%20D.&rft.date=2019-08&rft.volume=65&rft.issue=8&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16619&rft_dat=%3Cproquest_cross%3E2249682167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249682167&rft_id=info:pmid/&rfr_iscdi=true