Experimental and numerical investigation of solar flat plate cooking unit for domestic applications

The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-08, Vol.157, p.436-447
Hauptverfasser: Kumaresan, G., Santosh, R., Raju, G., Velraj, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue
container_start_page 436
container_title Energy (Oxford)
container_volume 157
creator Kumaresan, G.
Santosh, R.
Raju, G.
Velraj, R.
description The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K. •TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.
doi_str_mv 10.1016/j.energy.2018.05.168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249677418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218310120</els_id><sourcerecordid>2249677418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPAQ8t06TtEkugizrByx42XvopumS2k1q0i76702pZy8zzDDvzXsPofsC8gKK6rHLjTPh-JMTKEQOZV5U4gKtCsFpVnFRXqIV0AqykjFyjW5i7ACgFFKukN5-DybYk3Fj3ePaNdhNp7TQabLubOJoj_VovcO-xdH3dcBtX494SMVg7f2ndUc8OTvi1gfc-NMM0bgehj6RzMh4i67auo_m7q-v0f5lu9-8ZbuP1_fN8y7TlNMx41I3hOuWgCEV1QchNKdStpRKYEImN1Am1WXFgZcyWYUDaMoqRshBM6Br9LDQDsF_TUmG6vwUXPqoCGGy4pwVIl2x5UoHH2MwrRqS_Tr8qALUnKbq1JKmmtNUUKqUZoI9LTCTDJytCSpqa5w2jQ1Gj6rx9n-CX2aVf8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249677418</pqid></control><display><type>article</type><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><source>Elsevier ScienceDirect Journals</source><creator>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</creator><creatorcontrib>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</creatorcontrib><description>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K. •TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.05.168</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy ; CAD ; CFD analysis ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Cooking ; D Mannitol ; Energy balance ; Energy storage ; Energy utilization ; Flat plate cooking unit ; Flat plates ; Heat transfer ; Heat transfer coefficients ; Latent heat ; Liquefied petroleum gas ; Mannitol ; Numerical analysis ; Parabolic trough collector ; Phase change materials ; Renewable resources ; Solar domestic cooking ; Solar energy ; Solar heating ; Storage tanks ; Thermal energy ; Therminol 55</subject><ispartof>Energy (Oxford), 2018-08, Vol.157, p.436-447</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</citedby><cites>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544218310120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kumaresan, G.</creatorcontrib><creatorcontrib>Santosh, R.</creatorcontrib><creatorcontrib>Raju, G.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><title>Energy (Oxford)</title><description>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K. •TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</description><subject>Alternative energy</subject><subject>CAD</subject><subject>CFD analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Cooking</subject><subject>D Mannitol</subject><subject>Energy balance</subject><subject>Energy storage</subject><subject>Energy utilization</subject><subject>Flat plate cooking unit</subject><subject>Flat plates</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Latent heat</subject><subject>Liquefied petroleum gas</subject><subject>Mannitol</subject><subject>Numerical analysis</subject><subject>Parabolic trough collector</subject><subject>Phase change materials</subject><subject>Renewable resources</subject><subject>Solar domestic cooking</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>Storage tanks</subject><subject>Thermal energy</subject><subject>Therminol 55</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPAQ8t06TtEkugizrByx42XvopumS2k1q0i76702pZy8zzDDvzXsPofsC8gKK6rHLjTPh-JMTKEQOZV5U4gKtCsFpVnFRXqIV0AqykjFyjW5i7ACgFFKukN5-DybYk3Fj3ePaNdhNp7TQabLubOJoj_VovcO-xdH3dcBtX494SMVg7f2ndUc8OTvi1gfc-NMM0bgehj6RzMh4i67auo_m7q-v0f5lu9-8ZbuP1_fN8y7TlNMx41I3hOuWgCEV1QchNKdStpRKYEImN1Am1WXFgZcyWYUDaMoqRshBM6Br9LDQDsF_TUmG6vwUXPqoCGGy4pwVIl2x5UoHH2MwrRqS_Tr8qALUnKbq1JKmmtNUUKqUZoI9LTCTDJytCSpqa5w2jQ1Gj6rx9n-CX2aVf8Q</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Kumaresan, G.</creator><creator>Santosh, R.</creator><creator>Raju, G.</creator><creator>Velraj, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180815</creationdate><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><author>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy</topic><topic>CAD</topic><topic>CFD analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Cooking</topic><topic>D Mannitol</topic><topic>Energy balance</topic><topic>Energy storage</topic><topic>Energy utilization</topic><topic>Flat plate cooking unit</topic><topic>Flat plates</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Latent heat</topic><topic>Liquefied petroleum gas</topic><topic>Mannitol</topic><topic>Numerical analysis</topic><topic>Parabolic trough collector</topic><topic>Phase change materials</topic><topic>Renewable resources</topic><topic>Solar domestic cooking</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>Storage tanks</topic><topic>Thermal energy</topic><topic>Therminol 55</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaresan, G.</creatorcontrib><creatorcontrib>Santosh, R.</creatorcontrib><creatorcontrib>Raju, G.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaresan, G.</au><au>Santosh, R.</au><au>Raju, G.</au><au>Velraj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>157</volume><spage>436</spage><epage>447</epage><pages>436-447</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K. •TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.05.168</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-08, Vol.157, p.436-447
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2249677418
source Elsevier ScienceDirect Journals
subjects Alternative energy
CAD
CFD analysis
Computational fluid dynamics
Computer aided design
Computer applications
Cooking
D Mannitol
Energy balance
Energy storage
Energy utilization
Flat plate cooking unit
Flat plates
Heat transfer
Heat transfer coefficients
Latent heat
Liquefied petroleum gas
Mannitol
Numerical analysis
Parabolic trough collector
Phase change materials
Renewable resources
Solar domestic cooking
Solar energy
Solar heating
Storage tanks
Thermal energy
Therminol 55
title Experimental and numerical investigation of solar flat plate cooking unit for domestic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20investigation%20of%20solar%20flat%20plate%20cooking%20unit%20for%20domestic%20applications&rft.jtitle=Energy%20(Oxford)&rft.au=Kumaresan,%20G.&rft.date=2018-08-15&rft.volume=157&rft.spage=436&rft.epage=447&rft.pages=436-447&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.05.168&rft_dat=%3Cproquest_cross%3E2249677418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249677418&rft_id=info:pmid/&rft_els_id=S0360544218310120&rfr_iscdi=true