Experimental and numerical investigation of solar flat plate cooking unit for domestic applications
The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2018-08, Vol.157, p.436-447 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | |
container_start_page | 436 |
container_title | Energy (Oxford) |
container_volume | 157 |
creator | Kumaresan, G. Santosh, R. Raju, G. Velraj, R. |
description | The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K.
•TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results. |
doi_str_mv | 10.1016/j.energy.2018.05.168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249677418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218310120</els_id><sourcerecordid>2249677418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPAQ8t06TtEkugizrByx42XvopumS2k1q0i76702pZy8zzDDvzXsPofsC8gKK6rHLjTPh-JMTKEQOZV5U4gKtCsFpVnFRXqIV0AqykjFyjW5i7ACgFFKukN5-DybYk3Fj3ePaNdhNp7TQabLubOJoj_VovcO-xdH3dcBtX494SMVg7f2ndUc8OTvi1gfc-NMM0bgehj6RzMh4i67auo_m7q-v0f5lu9-8ZbuP1_fN8y7TlNMx41I3hOuWgCEV1QchNKdStpRKYEImN1Am1WXFgZcyWYUDaMoqRshBM6Br9LDQDsF_TUmG6vwUXPqoCGGy4pwVIl2x5UoHH2MwrRqS_Tr8qALUnKbq1JKmmtNUUKqUZoI9LTCTDJytCSpqa5w2jQ1Gj6rx9n-CX2aVf8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249677418</pqid></control><display><type>article</type><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><source>Elsevier ScienceDirect Journals</source><creator>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</creator><creatorcontrib>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</creatorcontrib><description>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K.
•TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.05.168</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy ; CAD ; CFD analysis ; Computational fluid dynamics ; Computer aided design ; Computer applications ; Cooking ; D Mannitol ; Energy balance ; Energy storage ; Energy utilization ; Flat plate cooking unit ; Flat plates ; Heat transfer ; Heat transfer coefficients ; Latent heat ; Liquefied petroleum gas ; Mannitol ; Numerical analysis ; Parabolic trough collector ; Phase change materials ; Renewable resources ; Solar domestic cooking ; Solar energy ; Solar heating ; Storage tanks ; Thermal energy ; Therminol 55</subject><ispartof>Energy (Oxford), 2018-08, Vol.157, p.436-447</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</citedby><cites>FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544218310120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kumaresan, G.</creatorcontrib><creatorcontrib>Santosh, R.</creatorcontrib><creatorcontrib>Raju, G.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><title>Energy (Oxford)</title><description>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K.
•TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</description><subject>Alternative energy</subject><subject>CAD</subject><subject>CFD analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer aided design</subject><subject>Computer applications</subject><subject>Cooking</subject><subject>D Mannitol</subject><subject>Energy balance</subject><subject>Energy storage</subject><subject>Energy utilization</subject><subject>Flat plate cooking unit</subject><subject>Flat plates</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Latent heat</subject><subject>Liquefied petroleum gas</subject><subject>Mannitol</subject><subject>Numerical analysis</subject><subject>Parabolic trough collector</subject><subject>Phase change materials</subject><subject>Renewable resources</subject><subject>Solar domestic cooking</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>Storage tanks</subject><subject>Thermal energy</subject><subject>Therminol 55</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPAQ8t06TtEkugizrByx42XvopumS2k1q0i76702pZy8zzDDvzXsPofsC8gKK6rHLjTPh-JMTKEQOZV5U4gKtCsFpVnFRXqIV0AqykjFyjW5i7ACgFFKukN5-DybYk3Fj3ePaNdhNp7TQabLubOJoj_VovcO-xdH3dcBtX494SMVg7f2ndUc8OTvi1gfc-NMM0bgehj6RzMh4i67auo_m7q-v0f5lu9-8ZbuP1_fN8y7TlNMx41I3hOuWgCEV1QchNKdStpRKYEImN1Am1WXFgZcyWYUDaMoqRshBM6Br9LDQDsF_TUmG6vwUXPqoCGGy4pwVIl2x5UoHH2MwrRqS_Tr8qALUnKbq1JKmmtNUUKqUZoI9LTCTDJytCSpqa5w2jQ1Gj6rx9n-CX2aVf8Q</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Kumaresan, G.</creator><creator>Santosh, R.</creator><creator>Raju, G.</creator><creator>Velraj, R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180815</creationdate><title>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</title><author>Kumaresan, G. ; Santosh, R. ; Raju, G. ; Velraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-79cd27cf20e263cb88c7399f33904891870505856707592010b0c346422bc403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy</topic><topic>CAD</topic><topic>CFD analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer aided design</topic><topic>Computer applications</topic><topic>Cooking</topic><topic>D Mannitol</topic><topic>Energy balance</topic><topic>Energy storage</topic><topic>Energy utilization</topic><topic>Flat plate cooking unit</topic><topic>Flat plates</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Latent heat</topic><topic>Liquefied petroleum gas</topic><topic>Mannitol</topic><topic>Numerical analysis</topic><topic>Parabolic trough collector</topic><topic>Phase change materials</topic><topic>Renewable resources</topic><topic>Solar domestic cooking</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>Storage tanks</topic><topic>Thermal energy</topic><topic>Therminol 55</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaresan, G.</creatorcontrib><creatorcontrib>Santosh, R.</creatorcontrib><creatorcontrib>Raju, G.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaresan, G.</au><au>Santosh, R.</au><au>Raju, G.</au><au>Velraj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical investigation of solar flat plate cooking unit for domestic applications</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>157</volume><spage>436</spage><epage>447</epage><pages>436-447</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K.
•TES system assisted solar flat plate cooking unit performance is carried out.•Energy balance analysis and various heat losses incurred are studied in detail.•Results of cooking unit CFD analysis are validated with the experimental results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.05.168</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2018-08, Vol.157, p.436-447 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2249677418 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative energy CAD CFD analysis Computational fluid dynamics Computer aided design Computer applications Cooking D Mannitol Energy balance Energy storage Energy utilization Flat plate cooking unit Flat plates Heat transfer Heat transfer coefficients Latent heat Liquefied petroleum gas Mannitol Numerical analysis Parabolic trough collector Phase change materials Renewable resources Solar domestic cooking Solar energy Solar heating Storage tanks Thermal energy Therminol 55 |
title | Experimental and numerical investigation of solar flat plate cooking unit for domestic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20investigation%20of%20solar%20flat%20plate%20cooking%20unit%20for%20domestic%20applications&rft.jtitle=Energy%20(Oxford)&rft.au=Kumaresan,%20G.&rft.date=2018-08-15&rft.volume=157&rft.spage=436&rft.epage=447&rft.pages=436-447&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.05.168&rft_dat=%3Cproquest_cross%3E2249677418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249677418&rft_id=info:pmid/&rft_els_id=S0360544218310120&rfr_iscdi=true |