Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China

Oscillatory zoned garnets are widespread in the Haobugao skarn‐type copper–lead–zinc–iron polymetallic deposit, and they can record garnet growing process in the early stages of metallogenesis. In order to investigate the skarn‐forming process and hydrothermal fluid evolution of the Haobugao deposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 2019-07, Vol.54 (4), p.1976-1992
Hauptverfasser: Fan, Xiejun, Wang, Xiangdong, Lü, Xinbiao, Wei, Wei, Chen, Wei, Yang, Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1992
container_issue 4
container_start_page 1976
container_title Geological journal (Chichester, England)
container_volume 54
creator Fan, Xiejun
Wang, Xiangdong
Lü, Xinbiao
Wei, Wei
Chen, Wei
Yang, Q.
description Oscillatory zoned garnets are widespread in the Haobugao skarn‐type copper–lead–zinc–iron polymetallic deposit, and they can record garnet growing process in the early stages of metallogenesis. In order to investigate the skarn‐forming process and hydrothermal fluid evolution of the Haobugao deposit, major, trace, and rare earth element (REE) contents of oscillatory zoned garnets were analysed by electron probe microscope analysis (EPMA) and laser‐ablation inductively‐coupled plasma mass spectrometry (LA‐ICP‐MS) techniques. Three distinct generations of garnets were identified: the first generation garnets (Grt I) are Fe‐rich, euhedral, fine‐ to coarse‐grained, isotropic, show characteristic concentric oscillatory zoning, and have light rare earth element (LREE)‐enriched and heavy rare earth element (HREE)‐depleted REE patterns, with strong positive Eu anomalies and low ΣREE concentrations. The second generation garnets (Grt II) are Al‐rich, anhedral to subhedral, anisotropic, with abundant oscillatory zoning alone the growth lines, and have LREE‐depleted and HREE‐enriched REE patterns, with negligible Eu anomalies and relatively higher ΣREE concentrations. The third generation garnets (Grt III) are anhedral, anisotropic and generally occurred at the rim of pre‐existing Grt I or beside fractures that cut through the pre‐existing Grt I crystals. All these three generations garnets show oscillatory zoning under an optical microscope and have different compositions from each other, but there's limited chemical zoning (such as bell‐shaped zoning of major elements) in each individual garnet crystal. The texture and composition characteristics of the garnets indicate that the Grt I is precipitated rapidly from high temperature and oxidized magmatic fluids by advective metasomatism, in a high water/rock ratio condition; the Grt II is precipitated from low temperature residual fluids that were in equilibrium with the host rock by diffusive metasomatism, in a low water/rock ratio condition; and the Grt III is formed by retrograde hydrothermal‐metasomatic alteration of pre‐existing garnets. The incorporation of REE into garnet is controlled by its crystal chemistry and fluid composition, dominated by the YAG (yttrium aluminium garnet) ‐type substitution mechanism X2+−1VIIIREE3++1VIIISi4+−1IVZ3++1IV.
doi_str_mv 10.1002/gj.3273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249671748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249671748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3123-efbc8972eb0846a3a6a4fb36cc94783834b96026e32dfc81919083171c92a4b33</originalsourceid><addsrcrecordid>eNp10UtOwzAQBmALgUR5iCuMxIIFtPhFErOrIihFragErCPHcVKX1C52KlRWHIFrcC1OQvrYspmZxad_RhqEzgjuEYzpdTXrMRqzPdQhWIguwYzvow7GMW3nG3yIjkKYYUwI5qSDfgbSW92AcvOFC6YxzoIMIC0YWxglG-fBlRDeWgal83O5Jrcw6v9-fQ_TSVvHzy0v4G4y7kNoloXRAdoUF5Sp63XACj6d1QVUm1UBSu_m0Ew1PEiXLyvpdvGF3pxwBUNrtYexs5WrjbyCdGqsPEEHpayDPt31Y_R6f_eSPnRHT4Nh2h91JSOUdXWZq0TEVOc44ZFkMpK8zFmklOBxwhLGcxFhGmlGi1IlRBCBE0ZiogSVPGfsGJ1vcxfevS91aLKZW3rbrswo5SKKScyTVl1slfIuBK_LbOHNXPpVRnC2_kNWzbL1H1p5uZUfptar_1g2eNzoP1GNim4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249671748</pqid></control><display><type>article</type><title>Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China</title><source>Wiley Online Library All Journals</source><creator>Fan, Xiejun ; Wang, Xiangdong ; Lü, Xinbiao ; Wei, Wei ; Chen, Wei ; Yang, Q.</creator><contributor>Yang, Q.</contributor><creatorcontrib>Fan, Xiejun ; Wang, Xiangdong ; Lü, Xinbiao ; Wei, Wei ; Chen, Wei ; Yang, Q. ; Yang, Q.</creatorcontrib><description>Oscillatory zoned garnets are widespread in the Haobugao skarn‐type copper–lead–zinc–iron polymetallic deposit, and they can record garnet growing process in the early stages of metallogenesis. In order to investigate the skarn‐forming process and hydrothermal fluid evolution of the Haobugao deposit, major, trace, and rare earth element (REE) contents of oscillatory zoned garnets were analysed by electron probe microscope analysis (EPMA) and laser‐ablation inductively‐coupled plasma mass spectrometry (LA‐ICP‐MS) techniques. Three distinct generations of garnets were identified: the first generation garnets (Grt I) are Fe‐rich, euhedral, fine‐ to coarse‐grained, isotropic, show characteristic concentric oscillatory zoning, and have light rare earth element (LREE)‐enriched and heavy rare earth element (HREE)‐depleted REE patterns, with strong positive Eu anomalies and low ΣREE concentrations. The second generation garnets (Grt II) are Al‐rich, anhedral to subhedral, anisotropic, with abundant oscillatory zoning alone the growth lines, and have LREE‐depleted and HREE‐enriched REE patterns, with negligible Eu anomalies and relatively higher ΣREE concentrations. The third generation garnets (Grt III) are anhedral, anisotropic and generally occurred at the rim of pre‐existing Grt I or beside fractures that cut through the pre‐existing Grt I crystals. All these three generations garnets show oscillatory zoning under an optical microscope and have different compositions from each other, but there's limited chemical zoning (such as bell‐shaped zoning of major elements) in each individual garnet crystal. The texture and composition characteristics of the garnets indicate that the Grt I is precipitated rapidly from high temperature and oxidized magmatic fluids by advective metasomatism, in a high water/rock ratio condition; the Grt II is precipitated from low temperature residual fluids that were in equilibrium with the host rock by diffusive metasomatism, in a low water/rock ratio condition; and the Grt III is formed by retrograde hydrothermal‐metasomatic alteration of pre‐existing garnets. The incorporation of REE into garnet is controlled by its crystal chemistry and fluid composition, dominated by the YAG (yttrium aluminium garnet) ‐type substitution mechanism X2+−1VIIIREE3++1VIIISi4+−1IVZ3++1IV.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.3273</identifier><language>eng</language><publisher>Liverpool: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Aluminium ; Aluminum ; Anisotropy ; Anomalies ; Composition ; Crystals ; Depletion ; Earth ; Electron probe ; Electron probes ; Fluids ; Fractures ; Garnet ; Garnets ; Haobugao ; Heavy metals ; High temperature ; Inductively coupled plasma mass spectrometry ; Inner Mongolia ; Iron ; Isotopes ; Laser ablation ; Lasers ; LA‐ICP‐MS ; Lead ; Low temperature ; Magma ; Major elements ; Mass spectrometry ; Mass spectroscopy ; Metallogenesis ; Optical microscopes ; Organic chemistry ; oscillatory zoning ; Rare earth elements ; Rocks ; skarn ; Trace elements ; Yttrium ; Yttrium-aluminum garnet ; Zinc ; Zoning</subject><ispartof>Geological journal (Chichester, England), 2019-07, Vol.54 (4), p.1976-1992</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3123-efbc8972eb0846a3a6a4fb36cc94783834b96026e32dfc81919083171c92a4b33</citedby><cites>FETCH-LOGICAL-a3123-efbc8972eb0846a3a6a4fb36cc94783834b96026e32dfc81919083171c92a4b33</cites><orcidid>0000-0002-1110-007X ; 0000-0002-4049-5357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.3273$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.3273$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><contributor>Yang, Q.</contributor><creatorcontrib>Fan, Xiejun</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Lü, Xinbiao</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><title>Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China</title><title>Geological journal (Chichester, England)</title><description>Oscillatory zoned garnets are widespread in the Haobugao skarn‐type copper–lead–zinc–iron polymetallic deposit, and they can record garnet growing process in the early stages of metallogenesis. In order to investigate the skarn‐forming process and hydrothermal fluid evolution of the Haobugao deposit, major, trace, and rare earth element (REE) contents of oscillatory zoned garnets were analysed by electron probe microscope analysis (EPMA) and laser‐ablation inductively‐coupled plasma mass spectrometry (LA‐ICP‐MS) techniques. Three distinct generations of garnets were identified: the first generation garnets (Grt I) are Fe‐rich, euhedral, fine‐ to coarse‐grained, isotropic, show characteristic concentric oscillatory zoning, and have light rare earth element (LREE)‐enriched and heavy rare earth element (HREE)‐depleted REE patterns, with strong positive Eu anomalies and low ΣREE concentrations. The second generation garnets (Grt II) are Al‐rich, anhedral to subhedral, anisotropic, with abundant oscillatory zoning alone the growth lines, and have LREE‐depleted and HREE‐enriched REE patterns, with negligible Eu anomalies and relatively higher ΣREE concentrations. The third generation garnets (Grt III) are anhedral, anisotropic and generally occurred at the rim of pre‐existing Grt I or beside fractures that cut through the pre‐existing Grt I crystals. All these three generations garnets show oscillatory zoning under an optical microscope and have different compositions from each other, but there's limited chemical zoning (such as bell‐shaped zoning of major elements) in each individual garnet crystal. The texture and composition characteristics of the garnets indicate that the Grt I is precipitated rapidly from high temperature and oxidized magmatic fluids by advective metasomatism, in a high water/rock ratio condition; the Grt II is precipitated from low temperature residual fluids that were in equilibrium with the host rock by diffusive metasomatism, in a low water/rock ratio condition; and the Grt III is formed by retrograde hydrothermal‐metasomatic alteration of pre‐existing garnets. The incorporation of REE into garnet is controlled by its crystal chemistry and fluid composition, dominated by the YAG (yttrium aluminium garnet) ‐type substitution mechanism X2+−1VIIIREE3++1VIIISi4+−1IVZ3++1IV.</description><subject>Ablation</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Anisotropy</subject><subject>Anomalies</subject><subject>Composition</subject><subject>Crystals</subject><subject>Depletion</subject><subject>Earth</subject><subject>Electron probe</subject><subject>Electron probes</subject><subject>Fluids</subject><subject>Fractures</subject><subject>Garnet</subject><subject>Garnets</subject><subject>Haobugao</subject><subject>Heavy metals</subject><subject>High temperature</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Inner Mongolia</subject><subject>Iron</subject><subject>Isotopes</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>LA‐ICP‐MS</subject><subject>Lead</subject><subject>Low temperature</subject><subject>Magma</subject><subject>Major elements</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metallogenesis</subject><subject>Optical microscopes</subject><subject>Organic chemistry</subject><subject>oscillatory zoning</subject><subject>Rare earth elements</subject><subject>Rocks</subject><subject>skarn</subject><subject>Trace elements</subject><subject>Yttrium</subject><subject>Yttrium-aluminum garnet</subject><subject>Zinc</subject><subject>Zoning</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10UtOwzAQBmALgUR5iCuMxIIFtPhFErOrIihFragErCPHcVKX1C52KlRWHIFrcC1OQvrYspmZxad_RhqEzgjuEYzpdTXrMRqzPdQhWIguwYzvow7GMW3nG3yIjkKYYUwI5qSDfgbSW92AcvOFC6YxzoIMIC0YWxglG-fBlRDeWgal83O5Jrcw6v9-fQ_TSVvHzy0v4G4y7kNoloXRAdoUF5Sp63XACj6d1QVUm1UBSu_m0Ew1PEiXLyvpdvGF3pxwBUNrtYexs5WrjbyCdGqsPEEHpayDPt31Y_R6f_eSPnRHT4Nh2h91JSOUdXWZq0TEVOc44ZFkMpK8zFmklOBxwhLGcxFhGmlGi1IlRBCBE0ZiogSVPGfsGJ1vcxfevS91aLKZW3rbrswo5SKKScyTVl1slfIuBK_LbOHNXPpVRnC2_kNWzbL1H1p5uZUfptar_1g2eNzoP1GNim4</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Fan, Xiejun</creator><creator>Wang, Xiangdong</creator><creator>Lü, Xinbiao</creator><creator>Wei, Wei</creator><creator>Chen, Wei</creator><creator>Yang, Q.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1110-007X</orcidid><orcidid>https://orcid.org/0000-0002-4049-5357</orcidid></search><sort><creationdate>201907</creationdate><title>Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China</title><author>Fan, Xiejun ; Wang, Xiangdong ; Lü, Xinbiao ; Wei, Wei ; Chen, Wei ; Yang, Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3123-efbc8972eb0846a3a6a4fb36cc94783834b96026e32dfc81919083171c92a4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablation</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Anisotropy</topic><topic>Anomalies</topic><topic>Composition</topic><topic>Crystals</topic><topic>Depletion</topic><topic>Earth</topic><topic>Electron probe</topic><topic>Electron probes</topic><topic>Fluids</topic><topic>Fractures</topic><topic>Garnet</topic><topic>Garnets</topic><topic>Haobugao</topic><topic>Heavy metals</topic><topic>High temperature</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Inner Mongolia</topic><topic>Iron</topic><topic>Isotopes</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>LA‐ICP‐MS</topic><topic>Lead</topic><topic>Low temperature</topic><topic>Magma</topic><topic>Major elements</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metallogenesis</topic><topic>Optical microscopes</topic><topic>Organic chemistry</topic><topic>oscillatory zoning</topic><topic>Rare earth elements</topic><topic>Rocks</topic><topic>skarn</topic><topic>Trace elements</topic><topic>Yttrium</topic><topic>Yttrium-aluminum garnet</topic><topic>Zinc</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiejun</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Lü, Xinbiao</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Q.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiejun</au><au>Wang, Xiangdong</au><au>Lü, Xinbiao</au><au>Wei, Wei</au><au>Chen, Wei</au><au>Yang, Q.</au><au>Yang, Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>54</volume><issue>4</issue><spage>1976</spage><epage>1992</epage><pages>1976-1992</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>Oscillatory zoned garnets are widespread in the Haobugao skarn‐type copper–lead–zinc–iron polymetallic deposit, and they can record garnet growing process in the early stages of metallogenesis. In order to investigate the skarn‐forming process and hydrothermal fluid evolution of the Haobugao deposit, major, trace, and rare earth element (REE) contents of oscillatory zoned garnets were analysed by electron probe microscope analysis (EPMA) and laser‐ablation inductively‐coupled plasma mass spectrometry (LA‐ICP‐MS) techniques. Three distinct generations of garnets were identified: the first generation garnets (Grt I) are Fe‐rich, euhedral, fine‐ to coarse‐grained, isotropic, show characteristic concentric oscillatory zoning, and have light rare earth element (LREE)‐enriched and heavy rare earth element (HREE)‐depleted REE patterns, with strong positive Eu anomalies and low ΣREE concentrations. The second generation garnets (Grt II) are Al‐rich, anhedral to subhedral, anisotropic, with abundant oscillatory zoning alone the growth lines, and have LREE‐depleted and HREE‐enriched REE patterns, with negligible Eu anomalies and relatively higher ΣREE concentrations. The third generation garnets (Grt III) are anhedral, anisotropic and generally occurred at the rim of pre‐existing Grt I or beside fractures that cut through the pre‐existing Grt I crystals. All these three generations garnets show oscillatory zoning under an optical microscope and have different compositions from each other, but there's limited chemical zoning (such as bell‐shaped zoning of major elements) in each individual garnet crystal. The texture and composition characteristics of the garnets indicate that the Grt I is precipitated rapidly from high temperature and oxidized magmatic fluids by advective metasomatism, in a high water/rock ratio condition; the Grt II is precipitated from low temperature residual fluids that were in equilibrium with the host rock by diffusive metasomatism, in a low water/rock ratio condition; and the Grt III is formed by retrograde hydrothermal‐metasomatic alteration of pre‐existing garnets. The incorporation of REE into garnet is controlled by its crystal chemistry and fluid composition, dominated by the YAG (yttrium aluminium garnet) ‐type substitution mechanism X2+−1VIIIREE3++1VIIISi4+−1IVZ3++1IV.</abstract><cop>Liverpool</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/gj.3273</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1110-007X</orcidid><orcidid>https://orcid.org/0000-0002-4049-5357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2019-07, Vol.54 (4), p.1976-1992
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_2249671748
source Wiley Online Library All Journals
subjects Ablation
Aluminium
Aluminum
Anisotropy
Anomalies
Composition
Crystals
Depletion
Earth
Electron probe
Electron probes
Fluids
Fractures
Garnet
Garnets
Haobugao
Heavy metals
High temperature
Inductively coupled plasma mass spectrometry
Inner Mongolia
Iron
Isotopes
Laser ablation
Lasers
LA‐ICP‐MS
Lead
Low temperature
Magma
Major elements
Mass spectrometry
Mass spectroscopy
Metallogenesis
Optical microscopes
Organic chemistry
oscillatory zoning
Rare earth elements
Rocks
skarn
Trace elements
Yttrium
Yttrium-aluminum garnet
Zinc
Zoning
title Garnet composition as an indicator of skarn formation: LA‐ICP‐MS and EPMA studies on oscillatory zoned garnets from the Haobugao skarn deposit, Inner Mongolia, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Garnet%20composition%20as%20an%20indicator%20of%20skarn%20formation:%20LA%E2%80%90ICP%E2%80%90MS%20and%20EPMA%20studies%20on%20oscillatory%20zoned%20garnets%20from%20the%20Haobugao%20skarn%20deposit,%20Inner%20Mongolia,%20China&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Fan,%20Xiejun&rft.date=2019-07&rft.volume=54&rft.issue=4&rft.spage=1976&rft.epage=1992&rft.pages=1976-1992&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.3273&rft_dat=%3Cproquest_cross%3E2249671748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249671748&rft_id=info:pmid/&rfr_iscdi=true