1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate

MoS2 has attracted widespread attention in catalysis fields due to its unique physical and chemical properties. However, the effect of thermal catalysis applications on the thermal decomposition of energetic materials has not been reported yet. In this work, we demonstrated that 1T/2H multi-phase Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2019, Vol.43 (26), p.10434-10441
Hauptverfasser: Hu, Lishuang, Liu, Yang, Hu, Shuangqi, Wang, Yanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10441
container_issue 26
container_start_page 10434
container_title New journal of chemistry
container_volume 43
creator Hu, Lishuang
Liu, Yang
Hu, Shuangqi
Wang, Yanping
description MoS2 has attracted widespread attention in catalysis fields due to its unique physical and chemical properties. However, the effect of thermal catalysis applications on the thermal decomposition of energetic materials has not been reported yet. In this work, we demonstrated that 1T/2H multi-phase MoS2 heterostructures were fabricated through a facile hydrothermal reaction and discovered that the 1T/2H-MoS2 heterostructure possesses intrinsic catalytic activity for the thermal decomposition of energetic salts such as dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50). The morphology, phase structure, and properties of the as-prepared catalysts were characterized and the catalytic effect of the multi-phase MoS2 heterostructure on the thermal decomposition of TKX-50 was evaluated. With 10 wt% 1T/2H-MoS2 heterostructure added, the peak temperature decreased from 250.8 °C to 198.5 °C, and the activation energy of TKX-50 from 220.07 kJ mol−1 to 133.04 kJ mol−1, respectively, which proved the promotion of the thermal decomposition of TKX-50 effectively. Furthermore, the possible catalytic mechanism for the TKX-50 decomposition was discussed. Under heat excitation, the conduction band electrons (ecb−) and valence band holes (h+) were excited and generated on MoS2 surfaces, which facilitated proton transfer from the H atom of NH3OH+ to the O atom of bistetrazole, and boosted the decomposition of TKX-50 further. This work may open up a new potential way for thermal catalysis application of MoS2 in the field of energetic materials.
doi_str_mv 10.1039/c9nj02749a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2249671698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249671698</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-e51c82959d90e78ee11db1b556878146dda0897375c040d09ad461977809c46c3</originalsourceid><addsrcrecordid>eNotjUtOwzAYhCMEEqWw4QSW2DbUf-InO4SAIhWxoKwr13YVV0kcbEciXXEVrsCROAnhsZrRzKeZLDsHfAm4lHMt2x0uOJHqIJtAyWQuCwaHowdCckwJO85OYtxhDMAZTLIPWM2LBWr6Orm8q1S06NE_F6iyyQYfU-h16oONVygObapsdHGGdKWC0iPg9io53yLVGjSWoVE10iqpehg5ZKz2Teej-2X8FhlXDSb4t6FWTeNb1zeIzujX-2e-cTHZFNTe1zaHGfxkxvlaJXuaHW1VHe3Zv06zl7vb1c0iXz7dP9xcL_MORJlyS0GLQlJpJLZcWAtgNrChlAkugDBjFBaSl5xqTLDBUhnCQHIusNSE6XKaXfztdsG_9jam9c73oR0v10VBJOPApCi_Ad23cAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249671698</pqid></control><display><type>article</type><title>1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hu, Lishuang ; Liu, Yang ; Hu, Shuangqi ; Wang, Yanping</creator><creatorcontrib>Hu, Lishuang ; Liu, Yang ; Hu, Shuangqi ; Wang, Yanping</creatorcontrib><description>MoS2 has attracted widespread attention in catalysis fields due to its unique physical and chemical properties. However, the effect of thermal catalysis applications on the thermal decomposition of energetic materials has not been reported yet. In this work, we demonstrated that 1T/2H multi-phase MoS2 heterostructures were fabricated through a facile hydrothermal reaction and discovered that the 1T/2H-MoS2 heterostructure possesses intrinsic catalytic activity for the thermal decomposition of energetic salts such as dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50). The morphology, phase structure, and properties of the as-prepared catalysts were characterized and the catalytic effect of the multi-phase MoS2 heterostructure on the thermal decomposition of TKX-50 was evaluated. With 10 wt% 1T/2H-MoS2 heterostructure added, the peak temperature decreased from 250.8 °C to 198.5 °C, and the activation energy of TKX-50 from 220.07 kJ mol−1 to 133.04 kJ mol−1, respectively, which proved the promotion of the thermal decomposition of TKX-50 effectively. Furthermore, the possible catalytic mechanism for the TKX-50 decomposition was discussed. Under heat excitation, the conduction band electrons (ecb−) and valence band holes (h+) were excited and generated on MoS2 surfaces, which facilitated proton transfer from the H atom of NH3OH+ to the O atom of bistetrazole, and boosted the decomposition of TKX-50 further. This work may open up a new potential way for thermal catalysis application of MoS2 in the field of energetic materials.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/c9nj02749a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysis ; Catalytic activity ; Chemical properties ; Chemical synthesis ; Conduction bands ; Conduction heating ; Decomposition ; Energetic materials ; Heterostructures ; Hydrothermal reactions ; Molybdenum disulfide ; Morphology ; Multiphase ; Organic chemistry ; Solid phases ; Thermal decomposition ; Thermodynamic properties ; Valence band</subject><ispartof>New journal of chemistry, 2019, Vol.43 (26), p.10434-10441</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Hu, Lishuang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Shuangqi</creatorcontrib><creatorcontrib>Wang, Yanping</creatorcontrib><title>1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate</title><title>New journal of chemistry</title><description>MoS2 has attracted widespread attention in catalysis fields due to its unique physical and chemical properties. However, the effect of thermal catalysis applications on the thermal decomposition of energetic materials has not been reported yet. In this work, we demonstrated that 1T/2H multi-phase MoS2 heterostructures were fabricated through a facile hydrothermal reaction and discovered that the 1T/2H-MoS2 heterostructure possesses intrinsic catalytic activity for the thermal decomposition of energetic salts such as dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50). The morphology, phase structure, and properties of the as-prepared catalysts were characterized and the catalytic effect of the multi-phase MoS2 heterostructure on the thermal decomposition of TKX-50 was evaluated. With 10 wt% 1T/2H-MoS2 heterostructure added, the peak temperature decreased from 250.8 °C to 198.5 °C, and the activation energy of TKX-50 from 220.07 kJ mol−1 to 133.04 kJ mol−1, respectively, which proved the promotion of the thermal decomposition of TKX-50 effectively. Furthermore, the possible catalytic mechanism for the TKX-50 decomposition was discussed. Under heat excitation, the conduction band electrons (ecb−) and valence band holes (h+) were excited and generated on MoS2 surfaces, which facilitated proton transfer from the H atom of NH3OH+ to the O atom of bistetrazole, and boosted the decomposition of TKX-50 further. This work may open up a new potential way for thermal catalysis application of MoS2 in the field of energetic materials.</description><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical properties</subject><subject>Chemical synthesis</subject><subject>Conduction bands</subject><subject>Conduction heating</subject><subject>Decomposition</subject><subject>Energetic materials</subject><subject>Heterostructures</subject><subject>Hydrothermal reactions</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>Multiphase</subject><subject>Organic chemistry</subject><subject>Solid phases</subject><subject>Thermal decomposition</subject><subject>Thermodynamic properties</subject><subject>Valence band</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotjUtOwzAYhCMEEqWw4QSW2DbUf-InO4SAIhWxoKwr13YVV0kcbEciXXEVrsCROAnhsZrRzKeZLDsHfAm4lHMt2x0uOJHqIJtAyWQuCwaHowdCckwJO85OYtxhDMAZTLIPWM2LBWr6Orm8q1S06NE_F6iyyQYfU-h16oONVygObapsdHGGdKWC0iPg9io53yLVGjSWoVE10iqpehg5ZKz2Teej-2X8FhlXDSb4t6FWTeNb1zeIzujX-2e-cTHZFNTe1zaHGfxkxvlaJXuaHW1VHe3Zv06zl7vb1c0iXz7dP9xcL_MORJlyS0GLQlJpJLZcWAtgNrChlAkugDBjFBaSl5xqTLDBUhnCQHIusNSE6XKaXfztdsG_9jam9c73oR0v10VBJOPApCi_Ad23cAo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hu, Lishuang</creator><creator>Liu, Yang</creator><creator>Hu, Shuangqi</creator><creator>Wang, Yanping</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>2019</creationdate><title>1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate</title><author>Hu, Lishuang ; Liu, Yang ; Hu, Shuangqi ; Wang, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-e51c82959d90e78ee11db1b556878146dda0897375c040d09ad461977809c46c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical properties</topic><topic>Chemical synthesis</topic><topic>Conduction bands</topic><topic>Conduction heating</topic><topic>Decomposition</topic><topic>Energetic materials</topic><topic>Heterostructures</topic><topic>Hydrothermal reactions</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>Multiphase</topic><topic>Organic chemistry</topic><topic>Solid phases</topic><topic>Thermal decomposition</topic><topic>Thermodynamic properties</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lishuang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Shuangqi</creatorcontrib><creatorcontrib>Wang, Yanping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lishuang</au><au>Liu, Yang</au><au>Hu, Shuangqi</au><au>Wang, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate</atitle><jtitle>New journal of chemistry</jtitle><date>2019</date><risdate>2019</risdate><volume>43</volume><issue>26</issue><spage>10434</spage><epage>10441</epage><pages>10434-10441</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>MoS2 has attracted widespread attention in catalysis fields due to its unique physical and chemical properties. However, the effect of thermal catalysis applications on the thermal decomposition of energetic materials has not been reported yet. In this work, we demonstrated that 1T/2H multi-phase MoS2 heterostructures were fabricated through a facile hydrothermal reaction and discovered that the 1T/2H-MoS2 heterostructure possesses intrinsic catalytic activity for the thermal decomposition of energetic salts such as dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50). The morphology, phase structure, and properties of the as-prepared catalysts were characterized and the catalytic effect of the multi-phase MoS2 heterostructure on the thermal decomposition of TKX-50 was evaluated. With 10 wt% 1T/2H-MoS2 heterostructure added, the peak temperature decreased from 250.8 °C to 198.5 °C, and the activation energy of TKX-50 from 220.07 kJ mol−1 to 133.04 kJ mol−1, respectively, which proved the promotion of the thermal decomposition of TKX-50 effectively. Furthermore, the possible catalytic mechanism for the TKX-50 decomposition was discussed. Under heat excitation, the conduction band electrons (ecb−) and valence band holes (h+) were excited and generated on MoS2 surfaces, which facilitated proton transfer from the H atom of NH3OH+ to the O atom of bistetrazole, and boosted the decomposition of TKX-50 further. This work may open up a new potential way for thermal catalysis application of MoS2 in the field of energetic materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nj02749a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2019, Vol.43 (26), p.10434-10441
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2249671698
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Catalysis
Catalytic activity
Chemical properties
Chemical synthesis
Conduction bands
Conduction heating
Decomposition
Energetic materials
Heterostructures
Hydrothermal reactions
Molybdenum disulfide
Morphology
Multiphase
Organic chemistry
Solid phases
Thermal decomposition
Thermodynamic properties
Valence band
title 1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A41%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1T/2H%20multi-phase%20MoS2%20heterostructures:%20synthesis,%20characterization%20and%20thermal%20catalysis%20decomposition%20of%20dihydroxylammonium%205,5%E2%80%B2-bistetrazole-1,1%E2%80%B2-diolate&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Hu,%20Lishuang&rft.date=2019&rft.volume=43&rft.issue=26&rft.spage=10434&rft.epage=10441&rft.pages=10434-10441&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/c9nj02749a&rft_dat=%3Cproquest%3E2249671698%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249671698&rft_id=info:pmid/&rfr_iscdi=true