EigenKernel

An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2019-01, Vol.36 (2), p.719-742
Hauptverfasser: Tanaka, Kazuyuki, Imachi, Hiroto, Fukumoto, Tomoya, Kuwata, Akiyoshi, Harada, Yuki, Fukaya, Takeshi, Yamamoto, Yusaku, Hoshi, Takeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue 2
container_start_page 719
container_title Japan journal of industrial and applied mathematics
container_volume 36
creator Tanaka, Kazuyuki
Imachi, Hiroto
Fukumoto, Tomoya
Kuwata, Akiyoshi
Harada, Yuki
Fukaya, Takeshi
Yamamoto, Yusaku
Hoshi, Takeo
description An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.
doi_str_mv 10.1007/s13160-019-00361-7
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2249092560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249092560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p727-28cb3d534575131bde5ea0dfb7f86c22ae11c01c39437af4cdd5b30d02086a023</originalsourceid><addsrcrecordid>eNotzbtOAzEQRuERAoll4QVoqQ3_eHwtURQuIhJNCrrIa3sRUbQJa_L-RILqdOcjumXcM-AfGgs7KHBUgDhW_ow6Di6oKP7jnDpEdsoD9pKuWtsCxgXmjvrl12ed3uo81d01XYxp1-rNf3taPy3Xixe1en9-XTyu1MFrr3TIgxQrxnp7UodSbU0o4-DH4LLWqTJncJZoxKfR5FLsICjQCC5BS093f9vDvP8-1vaz2e6P83QSN1qbiKitg_wCt6E3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249092560</pqid></control><display><type>article</type><title>EigenKernel</title><source>SpringerLink Journals</source><creator>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</creator><creatorcontrib>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</creatorcontrib><description>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-019-00361-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Architecture ; Bayesian analysis ; Benchmarks ; Co-design ; Computer simulation ; Eigenvalues ; Electron states ; Interpolation ; Markov analysis ; Markov chains ; Mathematical analysis ; Middleware ; Monte Carlo simulation ; Performance prediction ; Solvers ; Statistical inference ; Supercomputers ; Test procedures</subject><ispartof>Japan journal of industrial and applied mathematics, 2019-01, Vol.36 (2), p.719-742</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Imachi, Hiroto</creatorcontrib><creatorcontrib>Fukumoto, Tomoya</creatorcontrib><creatorcontrib>Kuwata, Akiyoshi</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Fukaya, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Yusaku</creatorcontrib><creatorcontrib>Hoshi, Takeo</creatorcontrib><title>EigenKernel</title><title>Japan journal of industrial and applied mathematics</title><description>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Bayesian analysis</subject><subject>Benchmarks</subject><subject>Co-design</subject><subject>Computer simulation</subject><subject>Eigenvalues</subject><subject>Electron states</subject><subject>Interpolation</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Middleware</subject><subject>Monte Carlo simulation</subject><subject>Performance prediction</subject><subject>Solvers</subject><subject>Statistical inference</subject><subject>Supercomputers</subject><subject>Test procedures</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzbtOAzEQRuERAoll4QVoqQ3_eHwtURQuIhJNCrrIa3sRUbQJa_L-RILqdOcjumXcM-AfGgs7KHBUgDhW_ow6Di6oKP7jnDpEdsoD9pKuWtsCxgXmjvrl12ed3uo81d01XYxp1-rNf3taPy3Xixe1en9-XTyu1MFrr3TIgxQrxnp7UodSbU0o4-DH4LLWqTJncJZoxKfR5FLsICjQCC5BS093f9vDvP8-1vaz2e6P83QSN1qbiKitg_wCt6E3ZQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tanaka, Kazuyuki</creator><creator>Imachi, Hiroto</creator><creator>Fukumoto, Tomoya</creator><creator>Kuwata, Akiyoshi</creator><creator>Harada, Yuki</creator><creator>Fukaya, Takeshi</creator><creator>Yamamoto, Yusaku</creator><creator>Hoshi, Takeo</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190101</creationdate><title>EigenKernel</title><author>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p727-28cb3d534575131bde5ea0dfb7f86c22ae11c01c39437af4cdd5b30d02086a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Bayesian analysis</topic><topic>Benchmarks</topic><topic>Co-design</topic><topic>Computer simulation</topic><topic>Eigenvalues</topic><topic>Electron states</topic><topic>Interpolation</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Middleware</topic><topic>Monte Carlo simulation</topic><topic>Performance prediction</topic><topic>Solvers</topic><topic>Statistical inference</topic><topic>Supercomputers</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Imachi, Hiroto</creatorcontrib><creatorcontrib>Fukumoto, Tomoya</creatorcontrib><creatorcontrib>Kuwata, Akiyoshi</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Fukaya, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Yusaku</creatorcontrib><creatorcontrib>Hoshi, Takeo</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Kazuyuki</au><au>Imachi, Hiroto</au><au>Fukumoto, Tomoya</au><au>Kuwata, Akiyoshi</au><au>Harada, Yuki</au><au>Fukaya, Takeshi</au><au>Yamamoto, Yusaku</au><au>Hoshi, Takeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EigenKernel</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>36</volume><issue>2</issue><spage>719</spage><epage>742</epage><pages>719-742</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13160-019-00361-7</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2019-01, Vol.36 (2), p.719-742
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_2249092560
source SpringerLink Journals
subjects Algorithms
Architecture
Bayesian analysis
Benchmarks
Co-design
Computer simulation
Eigenvalues
Electron states
Interpolation
Markov analysis
Markov chains
Mathematical analysis
Middleware
Monte Carlo simulation
Performance prediction
Solvers
Statistical inference
Supercomputers
Test procedures
title EigenKernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EigenKernel&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Tanaka,%20Kazuyuki&rft.date=2019-01-01&rft.volume=36&rft.issue=2&rft.spage=719&rft.epage=742&rft.pages=719-742&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-019-00361-7&rft_dat=%3Cproquest%3E2249092560%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249092560&rft_id=info:pmid/&rfr_iscdi=true