EigenKernel
An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libr...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2019-01, Vol.36 (2), p.719-742 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | 2 |
container_start_page | 719 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 36 |
creator | Tanaka, Kazuyuki Imachi, Hiroto Fukumoto, Tomoya Kuwata, Akiyoshi Harada, Yuki Fukaya, Takeshi Yamamoto, Yusaku Hoshi, Takeo |
description | An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers. |
doi_str_mv | 10.1007/s13160-019-00361-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2249092560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249092560</sourcerecordid><originalsourceid>FETCH-LOGICAL-p727-28cb3d534575131bde5ea0dfb7f86c22ae11c01c39437af4cdd5b30d02086a023</originalsourceid><addsrcrecordid>eNotzbtOAzEQRuERAoll4QVoqQ3_eHwtURQuIhJNCrrIa3sRUbQJa_L-RILqdOcjumXcM-AfGgs7KHBUgDhW_ow6Di6oKP7jnDpEdsoD9pKuWtsCxgXmjvrl12ed3uo81d01XYxp1-rNf3taPy3Xixe1en9-XTyu1MFrr3TIgxQrxnp7UodSbU0o4-DH4LLWqTJncJZoxKfR5FLsICjQCC5BS093f9vDvP8-1vaz2e6P83QSN1qbiKitg_wCt6E3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249092560</pqid></control><display><type>article</type><title>EigenKernel</title><source>SpringerLink Journals</source><creator>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</creator><creatorcontrib>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</creatorcontrib><description>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-019-00361-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Architecture ; Bayesian analysis ; Benchmarks ; Co-design ; Computer simulation ; Eigenvalues ; Electron states ; Interpolation ; Markov analysis ; Markov chains ; Mathematical analysis ; Middleware ; Monte Carlo simulation ; Performance prediction ; Solvers ; Statistical inference ; Supercomputers ; Test procedures</subject><ispartof>Japan journal of industrial and applied mathematics, 2019-01, Vol.36 (2), p.719-742</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Imachi, Hiroto</creatorcontrib><creatorcontrib>Fukumoto, Tomoya</creatorcontrib><creatorcontrib>Kuwata, Akiyoshi</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Fukaya, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Yusaku</creatorcontrib><creatorcontrib>Hoshi, Takeo</creatorcontrib><title>EigenKernel</title><title>Japan journal of industrial and applied mathematics</title><description>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Bayesian analysis</subject><subject>Benchmarks</subject><subject>Co-design</subject><subject>Computer simulation</subject><subject>Eigenvalues</subject><subject>Electron states</subject><subject>Interpolation</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Middleware</subject><subject>Monte Carlo simulation</subject><subject>Performance prediction</subject><subject>Solvers</subject><subject>Statistical inference</subject><subject>Supercomputers</subject><subject>Test procedures</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotzbtOAzEQRuERAoll4QVoqQ3_eHwtURQuIhJNCrrIa3sRUbQJa_L-RILqdOcjumXcM-AfGgs7KHBUgDhW_ow6Di6oKP7jnDpEdsoD9pKuWtsCxgXmjvrl12ed3uo81d01XYxp1-rNf3taPy3Xixe1en9-XTyu1MFrr3TIgxQrxnp7UodSbU0o4-DH4LLWqTJncJZoxKfR5FLsICjQCC5BS093f9vDvP8-1vaz2e6P83QSN1qbiKitg_wCt6E3ZQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Tanaka, Kazuyuki</creator><creator>Imachi, Hiroto</creator><creator>Fukumoto, Tomoya</creator><creator>Kuwata, Akiyoshi</creator><creator>Harada, Yuki</creator><creator>Fukaya, Takeshi</creator><creator>Yamamoto, Yusaku</creator><creator>Hoshi, Takeo</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190101</creationdate><title>EigenKernel</title><author>Tanaka, Kazuyuki ; Imachi, Hiroto ; Fukumoto, Tomoya ; Kuwata, Akiyoshi ; Harada, Yuki ; Fukaya, Takeshi ; Yamamoto, Yusaku ; Hoshi, Takeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p727-28cb3d534575131bde5ea0dfb7f86c22ae11c01c39437af4cdd5b30d02086a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Bayesian analysis</topic><topic>Benchmarks</topic><topic>Co-design</topic><topic>Computer simulation</topic><topic>Eigenvalues</topic><topic>Electron states</topic><topic>Interpolation</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Middleware</topic><topic>Monte Carlo simulation</topic><topic>Performance prediction</topic><topic>Solvers</topic><topic>Statistical inference</topic><topic>Supercomputers</topic><topic>Test procedures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Kazuyuki</creatorcontrib><creatorcontrib>Imachi, Hiroto</creatorcontrib><creatorcontrib>Fukumoto, Tomoya</creatorcontrib><creatorcontrib>Kuwata, Akiyoshi</creatorcontrib><creatorcontrib>Harada, Yuki</creatorcontrib><creatorcontrib>Fukaya, Takeshi</creatorcontrib><creatorcontrib>Yamamoto, Yusaku</creatorcontrib><creatorcontrib>Hoshi, Takeo</creatorcontrib><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Kazuyuki</au><au>Imachi, Hiroto</au><au>Fukumoto, Tomoya</au><au>Kuwata, Akiyoshi</au><au>Harada, Yuki</au><au>Fukaya, Takeshi</au><au>Yamamoto, Yusaku</au><au>Hoshi, Takeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EigenKernel</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>36</volume><issue>2</issue><spage>719</spage><epage>742</epage><pages>719-742</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>An open-source middleware named EigenKernel was developed for use with parallel generalized eigenvalue solvers or large-scale electronic state calculation to attain high scalability and usability. The middleware enables the users to choose the optimal solver, among the three parallel eigenvalue libraries of ScaLAPACK, ELPA, EigenExa and hybrid solvers constructed from them, according to the problem specification and the target architecture. The benchmark was carried out on the Oakforest-PACS supercomputer and reveals that ELPA, EigenExa and their hybrid solvers show better performance, when compared with pure ScaLAPACK solvers. The benchmark on the K computer is also used for discussion. In addition, a preliminary research for the performance prediction was investigated, so as to predict the elapsed time T as the function of the number of used nodes P (T=T(P)). The prediction is based on Bayesian inference in the Markov Chain Monte Carlo (MCMC) method and the test calculation indicates that the method is applicable not only to performance interpolation but also to extrapolation. Such a middleware is of crucial importance for application-algorithm-architecture co-design among the current, next-generation (exascale), and future-generation (post-Moore era) supercomputers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13160-019-00361-7</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2019-01, Vol.36 (2), p.719-742 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_2249092560 |
source | SpringerLink Journals |
subjects | Algorithms Architecture Bayesian analysis Benchmarks Co-design Computer simulation Eigenvalues Electron states Interpolation Markov analysis Markov chains Mathematical analysis Middleware Monte Carlo simulation Performance prediction Solvers Statistical inference Supercomputers Test procedures |
title | EigenKernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EigenKernel&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Tanaka,%20Kazuyuki&rft.date=2019-01-01&rft.volume=36&rft.issue=2&rft.spage=719&rft.epage=742&rft.pages=719-742&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-019-00361-7&rft_dat=%3Cproquest%3E2249092560%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249092560&rft_id=info:pmid/&rfr_iscdi=true |