Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films
Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron dop...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2019-07, Vol.228 (3), p.689-696 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 696 |
---|---|
container_issue | 3 |
container_start_page | 689 |
container_title | The European physical journal. ST, Special topics |
container_volume | 228 |
creator | Piatti, Erik Galanti, Francesco Pippione, Giulia Pasquarelli, Alberto Gonnelli, Renato S. |
description | Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime. |
doi_str_mv | 10.1140/epjst/e2019-800188-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249088195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249088195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPAc2yS3dTkKMV_UPBSz2E2m9Qtu0lNski_vbGrePM0w-O9N8wPoWtGbxmr6cLudykvLKdMEUkpk5KoEzRjSjCyrCk7_d0rIc7RRUo7SsWSq2qGzCZ8QmwTzu8Wdz6NPeQQSQ5ksBl6nCP41OUueAz5aEpjdGAsDg4XlWwh2xZ78MHEQyqRvvMWtx0MwbfYdf2QLtGZgz7Zq585R2-PD5vVM1m_Pr2s7tfEVFxkIiwVjXWNaUGAbOqqAs5YUaQUQjIA0TRWVcrRRjDuaHvX8NaY8qChRlGo5uhm6t3H8DHalPUujNGXk5rzWlEpC4XiqieXiSGlaJ3ex26AeNCM6m-c-ohTH3HqCadWJSamWCp2v7Xxr_zf3BeVc34_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249088195</pqid></control><display><type>article</type><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><source>SpringerLink (Online service)</source><creator>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</creator><creatorcontrib>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</creatorcontrib><description>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2019-800188-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Atomic ; Boron ; Classical and Continuum Physics ; Condensed Matter Physics ; Diamond films ; Doping ; Field effect transistors ; Hole density ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanocrystals ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Semiconductor devices ; Superconductivity and Functional Oxides ; Surface roughness</subject><ispartof>The European physical journal. ST, Special topics, 2019-07, Vol.228 (3), p.689-696</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</citedby><cites>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2019-800188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2019-800188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Galanti, Francesco</creatorcontrib><creatorcontrib>Pippione, Giulia</creatorcontrib><creatorcontrib>Pasquarelli, Alberto</creatorcontrib><creatorcontrib>Gonnelli, Renato S.</creatorcontrib><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</description><subject>Accumulation</subject><subject>Atomic</subject><subject>Boron</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Diamond films</subject><subject>Doping</subject><subject>Field effect transistors</subject><subject>Hole density</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanocrystals</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Semiconductor devices</subject><subject>Superconductivity and Functional Oxides</subject><subject>Surface roughness</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPAc2yS3dTkKMV_UPBSz2E2m9Qtu0lNski_vbGrePM0w-O9N8wPoWtGbxmr6cLudykvLKdMEUkpk5KoEzRjSjCyrCk7_d0rIc7RRUo7SsWSq2qGzCZ8QmwTzu8Wdz6NPeQQSQ5ksBl6nCP41OUueAz5aEpjdGAsDg4XlWwh2xZ78MHEQyqRvvMWtx0MwbfYdf2QLtGZgz7Zq585R2-PD5vVM1m_Pr2s7tfEVFxkIiwVjXWNaUGAbOqqAs5YUaQUQjIA0TRWVcrRRjDuaHvX8NaY8qChRlGo5uhm6t3H8DHalPUujNGXk5rzWlEpC4XiqieXiSGlaJ3ex26AeNCM6m-c-ohTH3HqCadWJSamWCp2v7Xxr_zf3BeVc34_</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Piatti, Erik</creator><creator>Galanti, Francesco</creator><creator>Pippione, Giulia</creator><creator>Pasquarelli, Alberto</creator><creator>Gonnelli, Renato S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><author>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>Atomic</topic><topic>Boron</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Diamond films</topic><topic>Doping</topic><topic>Field effect transistors</topic><topic>Hole density</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanocrystals</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Semiconductor devices</topic><topic>Superconductivity and Functional Oxides</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Galanti, Francesco</creatorcontrib><creatorcontrib>Pippione, Giulia</creatorcontrib><creatorcontrib>Pasquarelli, Alberto</creatorcontrib><creatorcontrib>Gonnelli, Renato S.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piatti, Erik</au><au>Galanti, Francesco</au><au>Pippione, Giulia</au><au>Pasquarelli, Alberto</au><au>Gonnelli, Renato S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>228</volume><issue>3</issue><spage>689</spage><epage>696</epage><pages>689-696</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2019-800188-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2019-07, Vol.228 (3), p.689-696 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2249088195 |
source | SpringerLink (Online service) |
subjects | Accumulation Atomic Boron Classical and Continuum Physics Condensed Matter Physics Diamond films Doping Field effect transistors Hole density Materials Science Measurement Science and Instrumentation Molecular Nanocrystals Optical and Plasma Physics Physics Physics and Astronomy Regular Article Semiconductor devices Superconductivity and Functional Oxides Surface roughness |
title | Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20insulator-to-metal%20transition%20at%20the%20surface%20of%20ion-gated%20nanocrystalline%20diamond%20films&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Piatti,%20Erik&rft.date=2019-07-01&rft.volume=228&rft.issue=3&rft.spage=689&rft.epage=696&rft.pages=689-696&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2019-800188-9&rft_dat=%3Cproquest_cross%3E2249088195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249088195&rft_id=info:pmid/&rfr_iscdi=true |