Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films

Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron dop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2019-07, Vol.228 (3), p.689-696
Hauptverfasser: Piatti, Erik, Galanti, Francesco, Pippione, Giulia, Pasquarelli, Alberto, Gonnelli, Renato S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 3
container_start_page 689
container_title The European physical journal. ST, Special topics
container_volume 228
creator Piatti, Erik
Galanti, Francesco
Pippione, Giulia
Pasquarelli, Alberto
Gonnelli, Renato S.
description Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.
doi_str_mv 10.1140/epjst/e2019-800188-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249088195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249088195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPAc2yS3dTkKMV_UPBSz2E2m9Qtu0lNski_vbGrePM0w-O9N8wPoWtGbxmr6cLudykvLKdMEUkpk5KoEzRjSjCyrCk7_d0rIc7RRUo7SsWSq2qGzCZ8QmwTzu8Wdz6NPeQQSQ5ksBl6nCP41OUueAz5aEpjdGAsDg4XlWwh2xZ78MHEQyqRvvMWtx0MwbfYdf2QLtGZgz7Zq585R2-PD5vVM1m_Pr2s7tfEVFxkIiwVjXWNaUGAbOqqAs5YUaQUQjIA0TRWVcrRRjDuaHvX8NaY8qChRlGo5uhm6t3H8DHalPUujNGXk5rzWlEpC4XiqieXiSGlaJ3ex26AeNCM6m-c-ohTH3HqCadWJSamWCp2v7Xxr_zf3BeVc34_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249088195</pqid></control><display><type>article</type><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><source>SpringerLink (Online service)</source><creator>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</creator><creatorcontrib>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</creatorcontrib><description>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2019-800188-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Atomic ; Boron ; Classical and Continuum Physics ; Condensed Matter Physics ; Diamond films ; Doping ; Field effect transistors ; Hole density ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanocrystals ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Semiconductor devices ; Superconductivity and Functional Oxides ; Surface roughness</subject><ispartof>The European physical journal. ST, Special topics, 2019-07, Vol.228 (3), p.689-696</ispartof><rights>EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</citedby><cites>FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2019-800188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2019-800188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Galanti, Francesco</creatorcontrib><creatorcontrib>Pippione, Giulia</creatorcontrib><creatorcontrib>Pasquarelli, Alberto</creatorcontrib><creatorcontrib>Gonnelli, Renato S.</creatorcontrib><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</description><subject>Accumulation</subject><subject>Atomic</subject><subject>Boron</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Diamond films</subject><subject>Doping</subject><subject>Field effect transistors</subject><subject>Hole density</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanocrystals</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Semiconductor devices</subject><subject>Superconductivity and Functional Oxides</subject><subject>Surface roughness</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPAc2yS3dTkKMV_UPBSz2E2m9Qtu0lNski_vbGrePM0w-O9N8wPoWtGbxmr6cLudykvLKdMEUkpk5KoEzRjSjCyrCk7_d0rIc7RRUo7SsWSq2qGzCZ8QmwTzu8Wdz6NPeQQSQ5ksBl6nCP41OUueAz5aEpjdGAsDg4XlWwh2xZ78MHEQyqRvvMWtx0MwbfYdf2QLtGZgz7Zq585R2-PD5vVM1m_Pr2s7tfEVFxkIiwVjXWNaUGAbOqqAs5YUaQUQjIA0TRWVcrRRjDuaHvX8NaY8qChRlGo5uhm6t3H8DHalPUujNGXk5rzWlEpC4XiqieXiSGlaJ3ex26AeNCM6m-c-ohTH3HqCadWJSamWCp2v7Xxr_zf3BeVc34_</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Piatti, Erik</creator><creator>Galanti, Francesco</creator><creator>Pippione, Giulia</creator><creator>Pasquarelli, Alberto</creator><creator>Gonnelli, Renato S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</title><author>Piatti, Erik ; Galanti, Francesco ; Pippione, Giulia ; Pasquarelli, Alberto ; Gonnelli, Renato S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5e05befbcda5a8b433a211bef885581aa5bbe939f0b512f0d7b2dcc640c0c90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>Atomic</topic><topic>Boron</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Diamond films</topic><topic>Doping</topic><topic>Field effect transistors</topic><topic>Hole density</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanocrystals</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Semiconductor devices</topic><topic>Superconductivity and Functional Oxides</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piatti, Erik</creatorcontrib><creatorcontrib>Galanti, Francesco</creatorcontrib><creatorcontrib>Pippione, Giulia</creatorcontrib><creatorcontrib>Pasquarelli, Alberto</creatorcontrib><creatorcontrib>Gonnelli, Renato S.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piatti, Erik</au><au>Galanti, Francesco</au><au>Pippione, Giulia</au><au>Pasquarelli, Alberto</au><au>Gonnelli, Renato S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>228</volume><issue>3</issue><spage>689</spage><epage>696</epage><pages>689-696</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Hole doping can control the conductivity of diamond either through boron substitution, or carrier accumulation in a field-effect transistor. In this work, we combine the two methods to investigate the insulator-to-metal transition at the surface of nanocrystalline diamond films. The finite boron doping strongly increases the maximum hole density which can be induced electrostatically with respect to intrinsic diamond. The ionic gate pushes the conductivity of the film surface away from the variable-range hopping regime and into the quantum critical regime. However, the combination of the strong intrinsic surface disorder due to a non-negligible surface roughness, and the introduction of extra scattering centers by the ionic gate, prevents the surface accumulation layer to reach the metallic regime.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2019-800188-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2019-07, Vol.228 (3), p.689-696
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2249088195
source SpringerLink (Online service)
subjects Accumulation
Atomic
Boron
Classical and Continuum Physics
Condensed Matter Physics
Diamond films
Doping
Field effect transistors
Hole density
Materials Science
Measurement Science and Instrumentation
Molecular
Nanocrystals
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Semiconductor devices
Superconductivity and Functional Oxides
Surface roughness
title Towards the insulator-to-metal transition at the surface of ion-gated nanocrystalline diamond films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20insulator-to-metal%20transition%20at%20the%20surface%20of%20ion-gated%20nanocrystalline%20diamond%20films&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Piatti,%20Erik&rft.date=2019-07-01&rft.volume=228&rft.issue=3&rft.spage=689&rft.epage=696&rft.pages=689-696&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2019-800188-9&rft_dat=%3Cproquest_cross%3E2249088195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249088195&rft_id=info:pmid/&rfr_iscdi=true