Using machine learning to examine the relationship between asthma and absenteeism
In this study, we found that machine learning was able to effectively estimate student learning outcomes geo-spatially across all the campuses in a large, urban, independent school district. The machine learning showed that key factors in estimating the student learning outcomes included the number...
Gespeichert in:
Veröffentlicht in: | Environmental monitoring and assessment 2019-06, Vol.191 (Suppl 2), p.332-9, Article 332 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | Suppl 2 |
container_start_page | 332 |
container_title | Environmental monitoring and assessment |
container_volume | 191 |
creator | Lary, Maria-Anna Allsopp, Leslie Lary, David J. Sterling, David A. |
description | In this study, we found that machine learning was able to effectively estimate student learning outcomes geo-spatially across all the campuses in a large, urban, independent school district. The machine learning showed that key factors in estimating the student learning outcomes included the number of days students were absent from school. In turn, one of the most important factors in estimating the number of days a student was absent was whether or not the student had asthma. This highlights the importance of environmental public health for student learning outcomes. |
doi_str_mv | 10.1007/s10661-019-7423-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2248884237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248884237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-9fdedbb67d0dddc4c37891d75df882252a051aec7bac6611e1becbe13b4804413</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEYmPwAbigSpwLcZo26RFN_JMmISR2jpLG3Tqt6Ug6Ad-eVB1w4mTr-flZ_hFyCfQGKBW3AWhRQEqhTAVnWcqOyBRyEZsyL4_JlEIh0iIrygk5C2FDKS0FL0_JJAOWcyphSl6XoXGrpNXVunGYbFF7Nwh9l-CnbgetX2Picav7pnNh3ewSg_0Hokt06NetTrSziTYBXY_YhPacnNR6G_DiUGdk-XD_Nn9KFy-Pz_O7RVplgvVpWVu0xhTCUmttxaMqS7Ait7WUjOVM0xw0VsLoKj4JCAYrg5AZLinnkM3I9Zi78937HkOvNt3eu3hSMcallJGIiC4YXZXvQvBYq51vWu2_FFA1QFQjRBUhqgGiYnHn6pC8Ny3a340fatHARkOII7dC_3f6_9Rv1rB9dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248884237</pqid></control><display><type>article</type><title>Using machine learning to examine the relationship between asthma and absenteeism</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lary, Maria-Anna ; Allsopp, Leslie ; Lary, David J. ; Sterling, David A.</creator><creatorcontrib>Lary, Maria-Anna ; Allsopp, Leslie ; Lary, David J. ; Sterling, David A.</creatorcontrib><description>In this study, we found that machine learning was able to effectively estimate student learning outcomes geo-spatially across all the campuses in a large, urban, independent school district. The machine learning showed that key factors in estimating the student learning outcomes included the number of days students were absent from school. In turn, one of the most important factors in estimating the number of days a student was absent was whether or not the student had asthma. This highlights the importance of environmental public health for student learning outcomes.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-019-7423-2</identifier><identifier>PMID: 31254081</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absenteeism ; Academic Success ; Adolescent ; Artificial intelligence ; Asthma ; Asthma - epidemiology ; Atmospheric Protection/Air Quality Control/Air Pollution ; Child ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Health - methods ; Environmental Health - statistics & numerical data ; Environmental Management ; Environmental monitoring ; Environmental science ; Estimation ; Female ; Humans ; Learning algorithms ; Machine Learning ; Male ; Monitoring/Environmental Analysis ; Public health ; Schools ; Students ; Texas - epidemiology ; Topical Collection on Geospatial Technology in Environmental Health Applications</subject><ispartof>Environmental monitoring and assessment, 2019-06, Vol.191 (Suppl 2), p.332-9, Article 332</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Environmental Monitoring and Assessment is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-9fdedbb67d0dddc4c37891d75df882252a051aec7bac6611e1becbe13b4804413</citedby><cites>FETCH-LOGICAL-c372t-9fdedbb67d0dddc4c37891d75df882252a051aec7bac6611e1becbe13b4804413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-019-7423-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-019-7423-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31254081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lary, Maria-Anna</creatorcontrib><creatorcontrib>Allsopp, Leslie</creatorcontrib><creatorcontrib>Lary, David J.</creatorcontrib><creatorcontrib>Sterling, David A.</creatorcontrib><title>Using machine learning to examine the relationship between asthma and absenteeism</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>In this study, we found that machine learning was able to effectively estimate student learning outcomes geo-spatially across all the campuses in a large, urban, independent school district. The machine learning showed that key factors in estimating the student learning outcomes included the number of days students were absent from school. In turn, one of the most important factors in estimating the number of days a student was absent was whether or not the student had asthma. This highlights the importance of environmental public health for student learning outcomes.</description><subject>Absenteeism</subject><subject>Academic Success</subject><subject>Adolescent</subject><subject>Artificial intelligence</subject><subject>Asthma</subject><subject>Asthma - epidemiology</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Child</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Health - methods</subject><subject>Environmental Health - statistics & numerical data</subject><subject>Environmental Management</subject><subject>Environmental monitoring</subject><subject>Environmental science</subject><subject>Estimation</subject><subject>Female</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Monitoring/Environmental Analysis</subject><subject>Public health</subject><subject>Schools</subject><subject>Students</subject><subject>Texas - epidemiology</subject><subject>Topical Collection on Geospatial Technology in Environmental Health Applications</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9PwzAMxSMEYmPwAbigSpwLcZo26RFN_JMmISR2jpLG3Tqt6Ug6Ad-eVB1w4mTr-flZ_hFyCfQGKBW3AWhRQEqhTAVnWcqOyBRyEZsyL4_JlEIh0iIrygk5C2FDKS0FL0_JJAOWcyphSl6XoXGrpNXVunGYbFF7Nwh9l-CnbgetX2Picav7pnNh3ewSg_0Hokt06NetTrSziTYBXY_YhPacnNR6G_DiUGdk-XD_Nn9KFy-Pz_O7RVplgvVpWVu0xhTCUmttxaMqS7Ait7WUjOVM0xw0VsLoKj4JCAYrg5AZLinnkM3I9Zi78937HkOvNt3eu3hSMcallJGIiC4YXZXvQvBYq51vWu2_FFA1QFQjRBUhqgGiYnHn6pC8Ny3a340fatHARkOII7dC_3f6_9Rv1rB9dw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Lary, Maria-Anna</creator><creator>Allsopp, Leslie</creator><creator>Lary, David J.</creator><creator>Sterling, David A.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20190601</creationdate><title>Using machine learning to examine the relationship between asthma and absenteeism</title><author>Lary, Maria-Anna ; Allsopp, Leslie ; Lary, David J. ; Sterling, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-9fdedbb67d0dddc4c37891d75df882252a051aec7bac6611e1becbe13b4804413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absenteeism</topic><topic>Academic Success</topic><topic>Adolescent</topic><topic>Artificial intelligence</topic><topic>Asthma</topic><topic>Asthma - epidemiology</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Child</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Health - methods</topic><topic>Environmental Health - statistics & numerical data</topic><topic>Environmental Management</topic><topic>Environmental monitoring</topic><topic>Environmental science</topic><topic>Estimation</topic><topic>Female</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Monitoring/Environmental Analysis</topic><topic>Public health</topic><topic>Schools</topic><topic>Students</topic><topic>Texas - epidemiology</topic><topic>Topical Collection on Geospatial Technology in Environmental Health Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lary, Maria-Anna</creatorcontrib><creatorcontrib>Allsopp, Leslie</creatorcontrib><creatorcontrib>Lary, David J.</creatorcontrib><creatorcontrib>Sterling, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lary, Maria-Anna</au><au>Allsopp, Leslie</au><au>Lary, David J.</au><au>Sterling, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning to examine the relationship between asthma and absenteeism</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>191</volume><issue>Suppl 2</issue><spage>332</spage><epage>9</epage><pages>332-9</pages><artnum>332</artnum><issn>0167-6369</issn><eissn>1573-2959</eissn><abstract>In this study, we found that machine learning was able to effectively estimate student learning outcomes geo-spatially across all the campuses in a large, urban, independent school district. The machine learning showed that key factors in estimating the student learning outcomes included the number of days students were absent from school. In turn, one of the most important factors in estimating the number of days a student was absent was whether or not the student had asthma. This highlights the importance of environmental public health for student learning outcomes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31254081</pmid><doi>10.1007/s10661-019-7423-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6369 |
ispartof | Environmental monitoring and assessment, 2019-06, Vol.191 (Suppl 2), p.332-9, Article 332 |
issn | 0167-6369 1573-2959 |
language | eng |
recordid | cdi_proquest_journals_2248884237 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Absenteeism Academic Success Adolescent Artificial intelligence Asthma Asthma - epidemiology Atmospheric Protection/Air Quality Control/Air Pollution Child Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Health - methods Environmental Health - statistics & numerical data Environmental Management Environmental monitoring Environmental science Estimation Female Humans Learning algorithms Machine Learning Male Monitoring/Environmental Analysis Public health Schools Students Texas - epidemiology Topical Collection on Geospatial Technology in Environmental Health Applications |
title | Using machine learning to examine the relationship between asthma and absenteeism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20to%20examine%20the%20relationship%20between%20asthma%20and%20absenteeism&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Lary,%20Maria-Anna&rft.date=2019-06-01&rft.volume=191&rft.issue=Suppl%202&rft.spage=332&rft.epage=9&rft.pages=332-9&rft.artnum=332&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-019-7423-2&rft_dat=%3Cproquest_cross%3E2248884237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248884237&rft_id=info:pmid/31254081&rfr_iscdi=true |