New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections
Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited—even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding “internal” complexity (via sheath flo...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2019-05, Vol.13 (3), p.034118-034118 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034118 |
---|---|
container_issue | 3 |
container_start_page | 034118 |
container_title | Biomicrofluidics |
container_volume | 13 |
creator | Rafeie, Mehdi Hosseinzadeh, Shahin Huang, Jingrui Mihandoust, Asma Warkiani, Majid Ebrahimi Taylor, Robert A. |
description | Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited—even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding “internal” complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex “external” cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 μm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an “additive rule” herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections. |
doi_str_mv | 10.1063/1.5109012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2248704361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336987333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-fc5179c7878f01a04e535d72b7df41c6b8afb55e147fd16f65d4fb5c7625a6243</originalsourceid><addsrcrecordid>eNp9kctuEzEUhi0EoiWw4AWQJTaANMG3sSebSlXFJVIFG1hbji8ZVzP2YHsCfQzeGIeEUEDCGx_95_PvcwHgKUZLjDh9jZctRiuEyT1wjleUNBi13f078Rl4lPMNQi0WhDwEZxQzijvMzsH3D_Yr9CH7bV9yDUqEpbdw6m-z1xlGVzWbilcDHL1O0Q2zN_uMD1DPaWfNQde9CsEOeQnX6yW8NMaHLVQBqhoVv7MwzYOF1X0OxqZcVDBQx3Ea7DdYn-fcZKuLjyE_Bg-cGrJ9crwX4PPbN5-u3jfXH9-try6vG80ELY3TtZmVFp3oHMIKMdvS1giyEcYxrPmmU27TthYz4QzmjreGVUELTlrFCaMLcHHwnebNaI22oSQ1yCn5UaVbGZWXf2aC7-U27iTnK4FIVw1eHA1S_DLbXOTos7bDoIKNc5aEUr7qBK1nAZ7_hd7EOYXaniSEdQIxynGlXh6onwNJ1p2KwUjuFy2xPC66ss_uVn8if222Aq8OQNa-qP1kT8wupt9OcjLuf_C_X_8APIrBwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248704361</pqid></control><display><type>article</type><title>New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rafeie, Mehdi ; Hosseinzadeh, Shahin ; Huang, Jingrui ; Mihandoust, Asma ; Warkiani, Majid Ebrahimi ; Taylor, Robert A.</creator><creatorcontrib>Rafeie, Mehdi ; Hosseinzadeh, Shahin ; Huang, Jingrui ; Mihandoust, Asma ; Warkiani, Majid Ebrahimi ; Taylor, Robert A.</creatorcontrib><description>Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited—even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding “internal” complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex “external” cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 μm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an “additive rule” herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.5109012</identifier><identifier>PMID: 31431814</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Complexity ; Cross-sections ; Microchannels ; Microfluidics ; Microparticles ; Numerical analysis ; Obstructions ; Regular ; Sheaths</subject><ispartof>Biomicrofluidics, 2019-05, Vol.13 (3), p.034118-034118</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><rights>Copyright © 2019 Author(s) 2019 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-fc5179c7878f01a04e535d72b7df41c6b8afb55e147fd16f65d4fb5c7625a6243</citedby><cites>FETCH-LOGICAL-c473t-fc5179c7878f01a04e535d72b7df41c6b8afb55e147fd16f65d4fb5c7625a6243</cites><orcidid>0000-0002-2910-8379 ; 0000-0002-6865-6239 ; 0000-0002-1723-3172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697028/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/1.5109012$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,723,776,780,790,881,4498,27901,27902,53766,53768,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31431814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rafeie, Mehdi</creatorcontrib><creatorcontrib>Hosseinzadeh, Shahin</creatorcontrib><creatorcontrib>Huang, Jingrui</creatorcontrib><creatorcontrib>Mihandoust, Asma</creatorcontrib><creatorcontrib>Warkiani, Majid Ebrahimi</creatorcontrib><creatorcontrib>Taylor, Robert A.</creatorcontrib><title>New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited—even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding “internal” complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex “external” cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 μm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an “additive rule” herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections.</description><subject>Complexity</subject><subject>Cross-sections</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Microparticles</subject><subject>Numerical analysis</subject><subject>Obstructions</subject><subject>Regular</subject><subject>Sheaths</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctuEzEUhi0EoiWw4AWQJTaANMG3sSebSlXFJVIFG1hbji8ZVzP2YHsCfQzeGIeEUEDCGx_95_PvcwHgKUZLjDh9jZctRiuEyT1wjleUNBi13f078Rl4lPMNQi0WhDwEZxQzijvMzsH3D_Yr9CH7bV9yDUqEpbdw6m-z1xlGVzWbilcDHL1O0Q2zN_uMD1DPaWfNQde9CsEOeQnX6yW8NMaHLVQBqhoVv7MwzYOF1X0OxqZcVDBQx3Ea7DdYn-fcZKuLjyE_Bg-cGrJ9crwX4PPbN5-u3jfXH9-try6vG80ELY3TtZmVFp3oHMIKMdvS1giyEcYxrPmmU27TthYz4QzmjreGVUELTlrFCaMLcHHwnebNaI22oSQ1yCn5UaVbGZWXf2aC7-U27iTnK4FIVw1eHA1S_DLbXOTos7bDoIKNc5aEUr7qBK1nAZ7_hd7EOYXaniSEdQIxynGlXh6onwNJ1p2KwUjuFy2xPC66ss_uVn8if222Aq8OQNa-qP1kT8wupt9OcjLuf_C_X_8APIrBwg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Rafeie, Mehdi</creator><creator>Hosseinzadeh, Shahin</creator><creator>Huang, Jingrui</creator><creator>Mihandoust, Asma</creator><creator>Warkiani, Majid Ebrahimi</creator><creator>Taylor, Robert A.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2910-8379</orcidid><orcidid>https://orcid.org/0000-0002-6865-6239</orcidid><orcidid>https://orcid.org/0000-0002-1723-3172</orcidid></search><sort><creationdate>20190501</creationdate><title>New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections</title><author>Rafeie, Mehdi ; Hosseinzadeh, Shahin ; Huang, Jingrui ; Mihandoust, Asma ; Warkiani, Majid Ebrahimi ; Taylor, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-fc5179c7878f01a04e535d72b7df41c6b8afb55e147fd16f65d4fb5c7625a6243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Complexity</topic><topic>Cross-sections</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Microparticles</topic><topic>Numerical analysis</topic><topic>Obstructions</topic><topic>Regular</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafeie, Mehdi</creatorcontrib><creatorcontrib>Hosseinzadeh, Shahin</creatorcontrib><creatorcontrib>Huang, Jingrui</creatorcontrib><creatorcontrib>Mihandoust, Asma</creatorcontrib><creatorcontrib>Warkiani, Majid Ebrahimi</creatorcontrib><creatorcontrib>Taylor, Robert A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafeie, Mehdi</au><au>Hosseinzadeh, Shahin</au><au>Huang, Jingrui</au><au>Mihandoust, Asma</au><au>Warkiani, Majid Ebrahimi</au><au>Taylor, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>034118</spage><epage>034118</epage><pages>034118-034118</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Curved microchannels allow controllable microparticle focusing, but a full understanding of particle behavior has been limited—even for simple rectangular and trapezoidal shapes. At present, most microfluidic particle separation literature is dedicated to adding “internal” complexity (via sheath flow or obstructions) to relatively simple cross-sectional channel shapes. We propose that, with sufficient understanding of particle behavior, an equally viable pathway for microparticle focusing could utilize complex “external” cross-sectional shapes. By investigating three novel, complex spiral microchannels, we have found that it is possible to passively focus (6, 10, and 13 μm) microparticles in the middle of a convex channel. Also, we found that in concave and jagged channel designs, it is possible to create multiple, tight focusing bands. In addition to these performance benefits, we report an “additive rule” herein, which states that complex channels can be considered as multiple, independent, simple cross-sectional shapes. We show with experimental and numerical analysis that this new additive rule can accurately predict particle behavior in complex cross-sectional shaped channels and that it can help to extract general inertial focusing tendencies for suspended particles in curved channels. Overall, this work provides simple, yet reliable, guidelines for the design of advanced curved microchannel cross sections.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31431814</pmid><doi>10.1063/1.5109012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2910-8379</orcidid><orcidid>https://orcid.org/0000-0002-6865-6239</orcidid><orcidid>https://orcid.org/0000-0002-1723-3172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2019-05, Vol.13 (3), p.034118-034118 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_journals_2248704361 |
source | AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Complexity Cross-sections Microchannels Microfluidics Microparticles Numerical analysis Obstructions Regular Sheaths |
title | New insights into the physics of inertial microfluidics in curved microchannels. II. Adding an additive rule to understand complex cross-sections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20physics%20of%20inertial%20microfluidics%20in%20curved%20microchannels.%20II.%20Adding%20an%20additive%20rule%20to%20understand%20complex%20cross-sections&rft.jtitle=Biomicrofluidics&rft.au=Rafeie,%20Mehdi&rft.date=2019-05-01&rft.volume=13&rft.issue=3&rft.spage=034118&rft.epage=034118&rft.pages=034118-034118&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.5109012&rft_dat=%3Cproquest_scita%3E2336987333%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248704361&rft_id=info:pmid/31431814&rfr_iscdi=true |