Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data

This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-07, Vol.20 (7), p.2550-2565
Hauptverfasser: You, Changbin, Wen, Chenglu, Wang, Cheng, Li, Jonathan, Habib, Ayman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2565
container_issue 7
container_start_page 2550
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator You, Changbin
Wen, Chenglu
Wang, Cheng
Li, Jonathan
Habib, Ayman
description This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.
doi_str_mv 10.1109/TITS.2018.2868168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2248675566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8478211</ieee_id><sourcerecordid>2248675566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYuHj8SZ4laKEVBLNKuLcdxKpdiFzss4OtJ1IqVR1f3jDUny26BzABI-bBeresZJSBnVOYScnmWTUAIiQmB_HycKcclEeQyu0ppN6RcAEyy5jU43yOKF5jhBVpH3XXOoNptPaq0bz91_EAL3WtU2x51IaKlDbgKRu_dr-5d8GiTnN-it9C4vR2YZCOqjfZ-TEfyOrvo9D7Zm9M7zTbPT-v5C67el6v5Y4UNLVmPOWGGUgkF51Jwops250w3JW2ZFaUhRSMbC4UFLWhrjG6ZyVvQtLW0GSLKptn9ce8hhq9vm3q1C9_RD18qSrnMCyHyfGjBsWViSCnaTh2iG678UUDUqFKNKtWoUp1UDszdkXHW2v--5IWkAOwPJpptvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248675566</pqid></control><display><type>article</type><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><source>IEEE Electronic Library (IEL)</source><creator>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</creator><creatorcontrib>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</creatorcontrib><description>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2868168</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Autonomous vehicles ; Datasets ; Driving ; Estimation ; geo-localization ; joint 2-D-3-D ; Landmarks ; Localization ; Localization method ; Machine learning ; mobile laser scanning (MLS) ; multi-view images ; Point cloud ; Scanning ; Semantics ; Shape ; Signs ; Three dimensional models ; Three-dimensional displays ; Traffic control ; traffic sign ; Traffic signs ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-07, Vol.20 (7), p.2550-2565</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</citedby><cites>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</cites><orcidid>0000-0002-6189-1236 ; 0000-0003-0502-2156 ; 0000-0001-6075-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8478211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8478211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, Changbin</creatorcontrib><creatorcontrib>Wen, Chenglu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><creatorcontrib>Habib, Ayman</creatorcontrib><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</description><subject>Automobiles</subject><subject>Autonomous vehicles</subject><subject>Datasets</subject><subject>Driving</subject><subject>Estimation</subject><subject>geo-localization</subject><subject>joint 2-D-3-D</subject><subject>Landmarks</subject><subject>Localization</subject><subject>Localization method</subject><subject>Machine learning</subject><subject>mobile laser scanning (MLS)</subject><subject>multi-view images</subject><subject>Point cloud</subject><subject>Scanning</subject><subject>Semantics</subject><subject>Shape</subject><subject>Signs</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Traffic control</subject><subject>traffic sign</subject><subject>Traffic signs</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYuHj8SZ4laKEVBLNKuLcdxKpdiFzss4OtJ1IqVR1f3jDUny26BzABI-bBeresZJSBnVOYScnmWTUAIiQmB_HycKcclEeQyu0ppN6RcAEyy5jU43yOKF5jhBVpH3XXOoNptPaq0bz91_EAL3WtU2x51IaKlDbgKRu_dr-5d8GiTnN-it9C4vR2YZCOqjfZ-TEfyOrvo9D7Zm9M7zTbPT-v5C67el6v5Y4UNLVmPOWGGUgkF51Jwops250w3JW2ZFaUhRSMbC4UFLWhrjG6ZyVvQtLW0GSLKptn9ce8hhq9vm3q1C9_RD18qSrnMCyHyfGjBsWViSCnaTh2iG678UUDUqFKNKtWoUp1UDszdkXHW2v--5IWkAOwPJpptvw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>You, Changbin</creator><creator>Wen, Chenglu</creator><creator>Wang, Cheng</creator><creator>Li, Jonathan</creator><creator>Habib, Ayman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6189-1236</orcidid><orcidid>https://orcid.org/0000-0003-0502-2156</orcidid><orcidid>https://orcid.org/0000-0001-6075-796X</orcidid></search><sort><creationdate>20190701</creationdate><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><author>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automobiles</topic><topic>Autonomous vehicles</topic><topic>Datasets</topic><topic>Driving</topic><topic>Estimation</topic><topic>geo-localization</topic><topic>joint 2-D-3-D</topic><topic>Landmarks</topic><topic>Localization</topic><topic>Localization method</topic><topic>Machine learning</topic><topic>mobile laser scanning (MLS)</topic><topic>multi-view images</topic><topic>Point cloud</topic><topic>Scanning</topic><topic>Semantics</topic><topic>Shape</topic><topic>Signs</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Traffic control</topic><topic>traffic sign</topic><topic>Traffic signs</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Changbin</creatorcontrib><creatorcontrib>Wen, Chenglu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><creatorcontrib>Habib, Ayman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, Changbin</au><au>Wen, Chenglu</au><au>Wang, Cheng</au><au>Li, Jonathan</au><au>Habib, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>7</issue><spage>2550</spage><epage>2565</epage><pages>2550-2565</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2868168</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6189-1236</orcidid><orcidid>https://orcid.org/0000-0003-0502-2156</orcidid><orcidid>https://orcid.org/0000-0001-6075-796X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-07, Vol.20 (7), p.2550-2565
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2248675566
source IEEE Electronic Library (IEL)
subjects Automobiles
Autonomous vehicles
Datasets
Driving
Estimation
geo-localization
joint 2-D-3-D
Landmarks
Localization
Localization method
Machine learning
mobile laser scanning (MLS)
multi-view images
Point cloud
Scanning
Semantics
Shape
Signs
Three dimensional models
Three-dimensional displays
Traffic control
traffic sign
Traffic signs
Trajectory
Trajectory analysis
title Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%202-D-3-D%20Traffic%20Sign%20Landmark%20Data%20Set%20for%20Geo-Localization%20Using%20Mobile%20Laser%20Scanning%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=You,%20Changbin&rft.date=2019-07-01&rft.volume=20&rft.issue=7&rft.spage=2550&rft.epage=2565&rft.pages=2550-2565&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2868168&rft_dat=%3Cproquest_RIE%3E2248675566%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248675566&rft_id=info:pmid/&rft_ieee_id=8478211&rfr_iscdi=true