Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data
This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2019-07, Vol.20 (7), p.2550-2565 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2565 |
---|---|
container_issue | 7 |
container_start_page | 2550 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 20 |
creator | You, Changbin Wen, Chenglu Wang, Cheng Li, Jonathan Habib, Ayman |
description | This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data. |
doi_str_mv | 10.1109/TITS.2018.2868168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2248675566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8478211</ieee_id><sourcerecordid>2248675566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYuHj8SZ4laKEVBLNKuLcdxKpdiFzss4OtJ1IqVR1f3jDUny26BzABI-bBeresZJSBnVOYScnmWTUAIiQmB_HycKcclEeQyu0ppN6RcAEyy5jU43yOKF5jhBVpH3XXOoNptPaq0bz91_EAL3WtU2x51IaKlDbgKRu_dr-5d8GiTnN-it9C4vR2YZCOqjfZ-TEfyOrvo9D7Zm9M7zTbPT-v5C67el6v5Y4UNLVmPOWGGUgkF51Jwops250w3JW2ZFaUhRSMbC4UFLWhrjG6ZyVvQtLW0GSLKptn9ce8hhq9vm3q1C9_RD18qSrnMCyHyfGjBsWViSCnaTh2iG678UUDUqFKNKtWoUp1UDszdkXHW2v--5IWkAOwPJpptvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248675566</pqid></control><display><type>article</type><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><source>IEEE Electronic Library (IEL)</source><creator>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</creator><creatorcontrib>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</creatorcontrib><description>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2868168</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Autonomous vehicles ; Datasets ; Driving ; Estimation ; geo-localization ; joint 2-D-3-D ; Landmarks ; Localization ; Localization method ; Machine learning ; mobile laser scanning (MLS) ; multi-view images ; Point cloud ; Scanning ; Semantics ; Shape ; Signs ; Three dimensional models ; Three-dimensional displays ; Traffic control ; traffic sign ; Traffic signs ; Trajectory ; Trajectory analysis</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-07, Vol.20 (7), p.2550-2565</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</citedby><cites>FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</cites><orcidid>0000-0002-6189-1236 ; 0000-0003-0502-2156 ; 0000-0001-6075-796X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8478211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8478211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, Changbin</creatorcontrib><creatorcontrib>Wen, Chenglu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><creatorcontrib>Habib, Ayman</creatorcontrib><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</description><subject>Automobiles</subject><subject>Autonomous vehicles</subject><subject>Datasets</subject><subject>Driving</subject><subject>Estimation</subject><subject>geo-localization</subject><subject>joint 2-D-3-D</subject><subject>Landmarks</subject><subject>Localization</subject><subject>Localization method</subject><subject>Machine learning</subject><subject>mobile laser scanning (MLS)</subject><subject>multi-view images</subject><subject>Point cloud</subject><subject>Scanning</subject><subject>Semantics</subject><subject>Shape</subject><subject>Signs</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Traffic control</subject><subject>traffic sign</subject><subject>Traffic signs</subject><subject>Trajectory</subject><subject>Trajectory analysis</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYuHj8SZ4laKEVBLNKuLcdxKpdiFzss4OtJ1IqVR1f3jDUny26BzABI-bBeresZJSBnVOYScnmWTUAIiQmB_HycKcclEeQyu0ppN6RcAEyy5jU43yOKF5jhBVpH3XXOoNptPaq0bz91_EAL3WtU2x51IaKlDbgKRu_dr-5d8GiTnN-it9C4vR2YZCOqjfZ-TEfyOrvo9D7Zm9M7zTbPT-v5C67el6v5Y4UNLVmPOWGGUgkF51Jwops250w3JW2ZFaUhRSMbC4UFLWhrjG6ZyVvQtLW0GSLKptn9ce8hhq9vm3q1C9_RD18qSrnMCyHyfGjBsWViSCnaTh2iG678UUDUqFKNKtWoUp1UDszdkXHW2v--5IWkAOwPJpptvw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>You, Changbin</creator><creator>Wen, Chenglu</creator><creator>Wang, Cheng</creator><creator>Li, Jonathan</creator><creator>Habib, Ayman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6189-1236</orcidid><orcidid>https://orcid.org/0000-0003-0502-2156</orcidid><orcidid>https://orcid.org/0000-0001-6075-796X</orcidid></search><sort><creationdate>20190701</creationdate><title>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</title><author>You, Changbin ; Wen, Chenglu ; Wang, Cheng ; Li, Jonathan ; Habib, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-403c22817448540abd643ab92d3e59c07b8be17e1a52dccad3c6d1a2de2ba5223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automobiles</topic><topic>Autonomous vehicles</topic><topic>Datasets</topic><topic>Driving</topic><topic>Estimation</topic><topic>geo-localization</topic><topic>joint 2-D-3-D</topic><topic>Landmarks</topic><topic>Localization</topic><topic>Localization method</topic><topic>Machine learning</topic><topic>mobile laser scanning (MLS)</topic><topic>multi-view images</topic><topic>Point cloud</topic><topic>Scanning</topic><topic>Semantics</topic><topic>Shape</topic><topic>Signs</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Traffic control</topic><topic>traffic sign</topic><topic>Traffic signs</topic><topic>Trajectory</topic><topic>Trajectory analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Changbin</creatorcontrib><creatorcontrib>Wen, Chenglu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Li, Jonathan</creatorcontrib><creatorcontrib>Habib, Ayman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, Changbin</au><au>Wen, Chenglu</au><au>Wang, Cheng</au><au>Li, Jonathan</au><au>Habib, Ayman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>20</volume><issue>7</issue><spage>2550</spage><epage>2565</epage><pages>2550-2565</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents a framework to build a joint 2-D-3-D traffic sign landmark data set for geo-localization using mobile laser scanning (MLS) data. The MLS data include 3-D point clouds and corresponding multi-view images. First, an integrated method, based on a deep learning network and the retro-reflective properties of traffic signs, is developed to accurately extract traffic signs from MLS point clouds. Next, the semantic and spatial properties of the traffic signs (type, location, position, and geometric characteristics) are obtained. Then, a joint 2-D-3-D traffic sign landmark data set is built, and a semantic-spatial organization graph is used to organize the traffic sign data set. Last, based on the traffic sign landmark data set, a geo-localization method for a driving car is proposed to estimate the driving trajectory. It can be used for auxiliary positioning of autonomous vehicles. Experimental results demonstrate the reliability of our proposed method for traffic sign detection and the potential of building 2-D-3-D traffic sign landmark data set for driving trajectory estimation from MLS data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2868168</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6189-1236</orcidid><orcidid>https://orcid.org/0000-0003-0502-2156</orcidid><orcidid>https://orcid.org/0000-0001-6075-796X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2019-07, Vol.20 (7), p.2550-2565 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2248675566 |
source | IEEE Electronic Library (IEL) |
subjects | Automobiles Autonomous vehicles Datasets Driving Estimation geo-localization joint 2-D-3-D Landmarks Localization Localization method Machine learning mobile laser scanning (MLS) multi-view images Point cloud Scanning Semantics Shape Signs Three dimensional models Three-dimensional displays Traffic control traffic sign Traffic signs Trajectory Trajectory analysis |
title | Joint 2-D-3-D Traffic Sign Landmark Data Set for Geo-Localization Using Mobile Laser Scanning Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%202-D-3-D%20Traffic%20Sign%20Landmark%20Data%20Set%20for%20Geo-Localization%20Using%20Mobile%20Laser%20Scanning%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=You,%20Changbin&rft.date=2019-07-01&rft.volume=20&rft.issue=7&rft.spage=2550&rft.epage=2565&rft.pages=2550-2565&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2868168&rft_dat=%3Cproquest_RIE%3E2248675566%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248675566&rft_id=info:pmid/&rft_ieee_id=8478211&rfr_iscdi=true |