Distribution-free uncertainty quantification for kernel methods by gradient perturbations

We propose a data-driven approach to quantify the uncertainty of models constructed by kernel methods. Our approach minimizes the needed distributional assumptions, hence, instead of working with, for example, Gaussian processes or exponential families, it only requires knowledge about some mild reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2019-09, Vol.108 (8-9), p.1677-1699
Hauptverfasser: Csáji, Balázs Cs, Kis, Krisztián B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1699
container_issue 8-9
container_start_page 1677
container_title Machine learning
container_volume 108
creator Csáji, Balázs Cs
Kis, Krisztián B.
description We propose a data-driven approach to quantify the uncertainty of models constructed by kernel methods. Our approach minimizes the needed distributional assumptions, hence, instead of working with, for example, Gaussian processes or exponential families, it only requires knowledge about some mild regularity of the measurement noise, such as it is being symmetric or exchangeable. We show, by building on recent results from finite-sample system identification, that by perturbing the residuals in the gradient of the objective function, information can be extracted about the amount of uncertainty our model has. Particularly, we provide an algorithm to build exact, non-asymptotically guaranteed, distribution-free confidence regions for ideal, noise-free representations of the function we try to estimate. For the typical convex quadratic problems and symmetric noises, the regions are star convex centered around a given nominal estimate, and have efficient ellipsoidal outer approximations. Finally, we illustrate the ideas on typical kernel methods, such as LS-SVC, KRR, ε -SVR and kernelized LASSO.
doi_str_mv 10.1007/s10994-019-05822-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2248023969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248023969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-800c8f3f0b8a4b98b55ccefdd1ea0a85615f7453fc3056670445bcdd98b035163</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPK8OsLDs0dTPpIkXPXgiLAuV2rItsIf-e2lr4s3TZDLPO5N5ELomcEsAmrtEoG3rCkhbAZeUVuQETQhvWGkFP0UTkJJXglB-ji5SWgIAFVJM0OeDTzn6bsx-CJWL1uIxGBuz9iHv8HbUIXvnjd7PsRsi_rYx2BVe2_w19Al3O7yIuvc2ZLwpuTF2BzZdojOnV8le_dYp-nh6fJ-9VPO359fZ_bwyTLBcSQAjHXPQSV13rew4N8a6vidWg5ZcEO6amjNnWHlFNFDXvDN9X0hgnAg2RTfHvZs4bEebsloOYwzlpKK0lkBZK9pC0SNl4pBStE5tol_ruFME1F6hOipURaE6KFSkhNgxlAocFjb-rf4n9QPPtXXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248023969</pqid></control><display><type>article</type><title>Distribution-free uncertainty quantification for kernel methods by gradient perturbations</title><source>SpringerNature Journals</source><creator>Csáji, Balázs Cs ; Kis, Krisztián B.</creator><creatorcontrib>Csáji, Balázs Cs ; Kis, Krisztián B.</creatorcontrib><description>We propose a data-driven approach to quantify the uncertainty of models constructed by kernel methods. Our approach minimizes the needed distributional assumptions, hence, instead of working with, for example, Gaussian processes or exponential families, it only requires knowledge about some mild regularity of the measurement noise, such as it is being symmetric or exchangeable. We show, by building on recent results from finite-sample system identification, that by perturbing the residuals in the gradient of the objective function, information can be extracted about the amount of uncertainty our model has. Particularly, we provide an algorithm to build exact, non-asymptotically guaranteed, distribution-free confidence regions for ideal, noise-free representations of the function we try to estimate. For the typical convex quadratic problems and symmetric noises, the regions are star convex centered around a given nominal estimate, and have efficient ellipsoidal outer approximations. Finally, we illustrate the ideas on typical kernel methods, such as LS-SVC, KRR, ε -SVR and kernelized LASSO.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-019-05822-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Computer Science ; Control ; Estimating techniques ; Gaussian process ; Kernels ; Mechatronics ; Natural Language Processing (NLP) ; Noise measurement ; Nonparametric statistics ; Robotics ; Simulation and Modeling ; Special Issue of the ECML PKDD 2019 Journal Track ; System identification ; Uncertainty</subject><ispartof>Machine learning, 2019-09, Vol.108 (8-9), p.1677-1699</ispartof><rights>The Author(s) 2019</rights><rights>Machine Learning is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-800c8f3f0b8a4b98b55ccefdd1ea0a85615f7453fc3056670445bcdd98b035163</citedby><cites>FETCH-LOGICAL-c363t-800c8f3f0b8a4b98b55ccefdd1ea0a85615f7453fc3056670445bcdd98b035163</cites><orcidid>0000-0001-7079-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-019-05822-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-019-05822-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Csáji, Balázs Cs</creatorcontrib><creatorcontrib>Kis, Krisztián B.</creatorcontrib><title>Distribution-free uncertainty quantification for kernel methods by gradient perturbations</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>We propose a data-driven approach to quantify the uncertainty of models constructed by kernel methods. Our approach minimizes the needed distributional assumptions, hence, instead of working with, for example, Gaussian processes or exponential families, it only requires knowledge about some mild regularity of the measurement noise, such as it is being symmetric or exchangeable. We show, by building on recent results from finite-sample system identification, that by perturbing the residuals in the gradient of the objective function, information can be extracted about the amount of uncertainty our model has. Particularly, we provide an algorithm to build exact, non-asymptotically guaranteed, distribution-free confidence regions for ideal, noise-free representations of the function we try to estimate. For the typical convex quadratic problems and symmetric noises, the regions are star convex centered around a given nominal estimate, and have efficient ellipsoidal outer approximations. Finally, we illustrate the ideas on typical kernel methods, such as LS-SVC, KRR, ε -SVR and kernelized LASSO.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Estimating techniques</subject><subject>Gaussian process</subject><subject>Kernels</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Noise measurement</subject><subject>Nonparametric statistics</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Special Issue of the ECML PKDD 2019 Journal Track</subject><subject>System identification</subject><subject>Uncertainty</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAyEQhonRxFr9A55IPK8OsLDs0dTPpIkXPXgiLAuV2rItsIf-e2lr4s3TZDLPO5N5ELomcEsAmrtEoG3rCkhbAZeUVuQETQhvWGkFP0UTkJJXglB-ji5SWgIAFVJM0OeDTzn6bsx-CJWL1uIxGBuz9iHv8HbUIXvnjd7PsRsi_rYx2BVe2_w19Al3O7yIuvc2ZLwpuTF2BzZdojOnV8le_dYp-nh6fJ-9VPO359fZ_bwyTLBcSQAjHXPQSV13rew4N8a6vidWg5ZcEO6amjNnWHlFNFDXvDN9X0hgnAg2RTfHvZs4bEebsloOYwzlpKK0lkBZK9pC0SNl4pBStE5tol_ruFME1F6hOipURaE6KFSkhNgxlAocFjb-rf4n9QPPtXXs</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Csáji, Balázs Cs</creator><creator>Kis, Krisztián B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7079-8343</orcidid></search><sort><creationdate>20190901</creationdate><title>Distribution-free uncertainty quantification for kernel methods by gradient perturbations</title><author>Csáji, Balázs Cs ; Kis, Krisztián B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-800c8f3f0b8a4b98b55ccefdd1ea0a85615f7453fc3056670445bcdd98b035163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Estimating techniques</topic><topic>Gaussian process</topic><topic>Kernels</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Noise measurement</topic><topic>Nonparametric statistics</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Special Issue of the ECML PKDD 2019 Journal Track</topic><topic>System identification</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csáji, Balázs Cs</creatorcontrib><creatorcontrib>Kis, Krisztián B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csáji, Balázs Cs</au><au>Kis, Krisztián B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution-free uncertainty quantification for kernel methods by gradient perturbations</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>108</volume><issue>8-9</issue><spage>1677</spage><epage>1699</epage><pages>1677-1699</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>We propose a data-driven approach to quantify the uncertainty of models constructed by kernel methods. Our approach minimizes the needed distributional assumptions, hence, instead of working with, for example, Gaussian processes or exponential families, it only requires knowledge about some mild regularity of the measurement noise, such as it is being symmetric or exchangeable. We show, by building on recent results from finite-sample system identification, that by perturbing the residuals in the gradient of the objective function, information can be extracted about the amount of uncertainty our model has. Particularly, we provide an algorithm to build exact, non-asymptotically guaranteed, distribution-free confidence regions for ideal, noise-free representations of the function we try to estimate. For the typical convex quadratic problems and symmetric noises, the regions are star convex centered around a given nominal estimate, and have efficient ellipsoidal outer approximations. Finally, we illustrate the ideas on typical kernel methods, such as LS-SVC, KRR, ε -SVR and kernelized LASSO.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-019-05822-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7079-8343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2019-09, Vol.108 (8-9), p.1677-1699
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2248023969
source SpringerNature Journals
subjects Algorithms
Approximation
Artificial Intelligence
Computer Science
Control
Estimating techniques
Gaussian process
Kernels
Mechatronics
Natural Language Processing (NLP)
Noise measurement
Nonparametric statistics
Robotics
Simulation and Modeling
Special Issue of the ECML PKDD 2019 Journal Track
System identification
Uncertainty
title Distribution-free uncertainty quantification for kernel methods by gradient perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution-free%20uncertainty%20quantification%20for%20kernel%20methods%20by%20gradient%20perturbations&rft.jtitle=Machine%20learning&rft.au=Cs%C3%A1ji,%20Bal%C3%A1zs%20Cs&rft.date=2019-09-01&rft.volume=108&rft.issue=8-9&rft.spage=1677&rft.epage=1699&rft.pages=1677-1699&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-019-05822-1&rft_dat=%3Cproquest_cross%3E2248023969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248023969&rft_id=info:pmid/&rfr_iscdi=true