A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training

This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2019-07, Vol.21 (7), p.1880-1891
Hauptverfasser: Cui, Runpeng, Liu, Hu, Zhang, Changshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1891
container_issue 7
container_start_page 1880
container_title IEEE transactions on multimedia
container_volume 21
creator Cui, Runpeng
Liu, Hu
Zhang, Changshui
description This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.
doi_str_mv 10.1109/TMM.2018.2889563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2247924953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598757</ieee_id><sourcerecordid>2247924953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</originalsourceid><addsrcrecordid>eNo9kMFOAjEQQBujiYjeTbw08bw47bbb9khQlAQ0UfTalKXdFKHF7q6Ev3cJxNPM4b2Z5CF0S2BACKiH-Ww2oEDkgEqpeJGfoR5RjGQAQpx3O6eQKUrgEl3V9QqAMA6ih76G-NHaLX61bTJrPE5mY3cxfWMXEx7F0PjQxrbGH74KeGpC1ZrK4ndbxir4xseAF3s8aWwyjf-1eJ6MDz5U1-jCmXVtb06zjz7HT_PRSzZ9e56MhtOszLloMm5cuTCyJBQcK9WCcLKkztCCqcIqSSlbOmc4KQhQUxQcnOQFk5JJbogSLO-j--PdbYo_ra0bvYptCt1L3clCUaZ43lFwpMoU6zpZp7fJb0zaawL6UE939fShnj7V65S7o-Kttf-45EoKLvI_eotqIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247924953</pqid></control><display><type>article</type><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</creator><creatorcontrib>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</creatorcontrib><description>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2889563</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alignment ; Architecture ; Artificial neural networks ; Color imagery ; Continuous sign language recognition ; Convolutional neural networks ; Feature extraction ; Gesture recognition ; Gloss ; Hidden Markov models ; Iterative methods ; iterative training ; Markov chains ; Modules ; multimodal fusion ; Neural networks ; Optical flow (image analysis) ; Optimization ; Recognition ; Recurrent neural networks ; Sentences ; sequence learning ; Sign language ; Training ; Videos</subject><ispartof>IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1880-1891</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</citedby><cites>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</cites><orcidid>0000-0003-2225-7387 ; 0000-0002-8088-367X ; 0000-0002-4737-788X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8598757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Runpeng</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</description><subject>Alignment</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Color imagery</subject><subject>Continuous sign language recognition</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>Gesture recognition</subject><subject>Gloss</subject><subject>Hidden Markov models</subject><subject>Iterative methods</subject><subject>iterative training</subject><subject>Markov chains</subject><subject>Modules</subject><subject>multimodal fusion</subject><subject>Neural networks</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Recurrent neural networks</subject><subject>Sentences</subject><subject>sequence learning</subject><subject>Sign language</subject><subject>Training</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQQBujiYjeTbw08bw47bbb9khQlAQ0UfTalKXdFKHF7q6Ev3cJxNPM4b2Z5CF0S2BACKiH-Ww2oEDkgEqpeJGfoR5RjGQAQpx3O6eQKUrgEl3V9QqAMA6ih76G-NHaLX61bTJrPE5mY3cxfWMXEx7F0PjQxrbGH74KeGpC1ZrK4ndbxir4xseAF3s8aWwyjf-1eJ6MDz5U1-jCmXVtb06zjz7HT_PRSzZ9e56MhtOszLloMm5cuTCyJBQcK9WCcLKkztCCqcIqSSlbOmc4KQhQUxQcnOQFk5JJbogSLO-j--PdbYo_ra0bvYptCt1L3clCUaZ43lFwpMoU6zpZp7fJb0zaawL6UE939fShnj7V65S7o-Kttf-45EoKLvI_eotqIw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Cui, Runpeng</creator><creator>Liu, Hu</creator><creator>Zhang, Changshui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2225-7387</orcidid><orcidid>https://orcid.org/0000-0002-8088-367X</orcidid><orcidid>https://orcid.org/0000-0002-4737-788X</orcidid></search><sort><creationdate>20190701</creationdate><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><author>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alignment</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Color imagery</topic><topic>Continuous sign language recognition</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>Gesture recognition</topic><topic>Gloss</topic><topic>Hidden Markov models</topic><topic>Iterative methods</topic><topic>iterative training</topic><topic>Markov chains</topic><topic>Modules</topic><topic>multimodal fusion</topic><topic>Neural networks</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Recurrent neural networks</topic><topic>Sentences</topic><topic>sequence learning</topic><topic>Sign language</topic><topic>Training</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Runpeng</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Runpeng</au><au>Liu, Hu</au><au>Zhang, Changshui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>21</volume><issue>7</issue><spage>1880</spage><epage>1891</epage><pages>1880-1891</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2889563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2225-7387</orcidid><orcidid>https://orcid.org/0000-0002-8088-367X</orcidid><orcidid>https://orcid.org/0000-0002-4737-788X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1880-1891
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2247924953
source IEEE Electronic Library (IEL)
subjects Alignment
Architecture
Artificial neural networks
Color imagery
Continuous sign language recognition
Convolutional neural networks
Feature extraction
Gesture recognition
Gloss
Hidden Markov models
Iterative methods
iterative training
Markov chains
Modules
multimodal fusion
Neural networks
Optical flow (image analysis)
Optimization
Recognition
Recurrent neural networks
Sentences
sequence learning
Sign language
Training
Videos
title A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Neural%20Framework%20for%20Continuous%20Sign%20Language%20Recognition%20by%20Iterative%20Training&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Cui,%20Runpeng&rft.date=2019-07-01&rft.volume=21&rft.issue=7&rft.spage=1880&rft.epage=1891&rft.pages=1880-1891&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2889563&rft_dat=%3Cproquest_RIE%3E2247924953%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247924953&rft_id=info:pmid/&rft_ieee_id=8598757&rfr_iscdi=true