A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training
This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2019-07, Vol.21 (7), p.1880-1891 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1891 |
---|---|
container_issue | 7 |
container_start_page | 1880 |
container_title | IEEE transactions on multimedia |
container_volume | 21 |
creator | Cui, Runpeng Liu, Hu Zhang, Changshui |
description | This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases. |
doi_str_mv | 10.1109/TMM.2018.2889563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2247924953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598757</ieee_id><sourcerecordid>2247924953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</originalsourceid><addsrcrecordid>eNo9kMFOAjEQQBujiYjeTbw08bw47bbb9khQlAQ0UfTalKXdFKHF7q6Ev3cJxNPM4b2Z5CF0S2BACKiH-Ww2oEDkgEqpeJGfoR5RjGQAQpx3O6eQKUrgEl3V9QqAMA6ih76G-NHaLX61bTJrPE5mY3cxfWMXEx7F0PjQxrbGH74KeGpC1ZrK4ndbxir4xseAF3s8aWwyjf-1eJ6MDz5U1-jCmXVtb06zjz7HT_PRSzZ9e56MhtOszLloMm5cuTCyJBQcK9WCcLKkztCCqcIqSSlbOmc4KQhQUxQcnOQFk5JJbogSLO-j--PdbYo_ra0bvYptCt1L3clCUaZ43lFwpMoU6zpZp7fJb0zaawL6UE939fShnj7V65S7o-Kttf-45EoKLvI_eotqIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2247924953</pqid></control><display><type>article</type><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</creator><creatorcontrib>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</creatorcontrib><description>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2018.2889563</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alignment ; Architecture ; Artificial neural networks ; Color imagery ; Continuous sign language recognition ; Convolutional neural networks ; Feature extraction ; Gesture recognition ; Gloss ; Hidden Markov models ; Iterative methods ; iterative training ; Markov chains ; Modules ; multimodal fusion ; Neural networks ; Optical flow (image analysis) ; Optimization ; Recognition ; Recurrent neural networks ; Sentences ; sequence learning ; Sign language ; Training ; Videos</subject><ispartof>IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1880-1891</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</citedby><cites>FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</cites><orcidid>0000-0003-2225-7387 ; 0000-0002-8088-367X ; 0000-0002-4737-788X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8598757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cui, Runpeng</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</description><subject>Alignment</subject><subject>Architecture</subject><subject>Artificial neural networks</subject><subject>Color imagery</subject><subject>Continuous sign language recognition</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>Gesture recognition</subject><subject>Gloss</subject><subject>Hidden Markov models</subject><subject>Iterative methods</subject><subject>iterative training</subject><subject>Markov chains</subject><subject>Modules</subject><subject>multimodal fusion</subject><subject>Neural networks</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Recognition</subject><subject>Recurrent neural networks</subject><subject>Sentences</subject><subject>sequence learning</subject><subject>Sign language</subject><subject>Training</subject><subject>Videos</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQQBujiYjeTbw08bw47bbb9khQlAQ0UfTalKXdFKHF7q6Ev3cJxNPM4b2Z5CF0S2BACKiH-Ww2oEDkgEqpeJGfoR5RjGQAQpx3O6eQKUrgEl3V9QqAMA6ih76G-NHaLX61bTJrPE5mY3cxfWMXEx7F0PjQxrbGH74KeGpC1ZrK4ndbxir4xseAF3s8aWwyjf-1eJ6MDz5U1-jCmXVtb06zjz7HT_PRSzZ9e56MhtOszLloMm5cuTCyJBQcK9WCcLKkztCCqcIqSSlbOmc4KQhQUxQcnOQFk5JJbogSLO-j--PdbYo_ra0bvYptCt1L3clCUaZ43lFwpMoU6zpZp7fJb0zaawL6UE939fShnj7V65S7o-Kttf-45EoKLvI_eotqIw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Cui, Runpeng</creator><creator>Liu, Hu</creator><creator>Zhang, Changshui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2225-7387</orcidid><orcidid>https://orcid.org/0000-0002-8088-367X</orcidid><orcidid>https://orcid.org/0000-0002-4737-788X</orcidid></search><sort><creationdate>20190701</creationdate><title>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</title><author>Cui, Runpeng ; Liu, Hu ; Zhang, Changshui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5afcba8c120f4c9b151d2fa26496e98224dffa516102a6650f856488485a19743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alignment</topic><topic>Architecture</topic><topic>Artificial neural networks</topic><topic>Color imagery</topic><topic>Continuous sign language recognition</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>Gesture recognition</topic><topic>Gloss</topic><topic>Hidden Markov models</topic><topic>Iterative methods</topic><topic>iterative training</topic><topic>Markov chains</topic><topic>Modules</topic><topic>multimodal fusion</topic><topic>Neural networks</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Recognition</topic><topic>Recurrent neural networks</topic><topic>Sentences</topic><topic>sequence learning</topic><topic>Sign language</topic><topic>Training</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Runpeng</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Zhang, Changshui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Runpeng</au><au>Liu, Hu</au><au>Zhang, Changshui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>21</volume><issue>7</issue><spage>1880</spage><epage>1891</epage><pages>1880-1891</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>This work develops a continuous sign language (SL) recognition framework with deep neural networks, which directly transcribes videos of SL sentences to sequences of ordered gloss labels. Previous methods dealing with continuous SL recognition usually employ hidden Markov models with limited capacity to capture the temporal information. In contrast, our proposed architecture adopts deep convolutional neural networks with stacked temporal fusion layers as the feature extraction module, and bidirectional recurrent neural networks as the sequence learning module. We propose an iterative optimization process for our architecture to fully exploit the representation capability of deep neural networks with limited data. We first train the end-to-end recognition model for alignment proposal, and then use the alignment proposal as strong supervisory information to directly tune the feature extraction module. This training process can run iteratively to achieve improvements on the recognition performance. We further contribute by exploring the multimodal fusion of RGB images and optical flow in sign language. Our method is evaluated on two challenging SL recognition benchmarks, and outperforms the state of the art by a relative improvement of more than 15% on both databases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2018.2889563</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2225-7387</orcidid><orcidid>https://orcid.org/0000-0002-8088-367X</orcidid><orcidid>https://orcid.org/0000-0002-4737-788X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2019-07, Vol.21 (7), p.1880-1891 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2247924953 |
source | IEEE Electronic Library (IEL) |
subjects | Alignment Architecture Artificial neural networks Color imagery Continuous sign language recognition Convolutional neural networks Feature extraction Gesture recognition Gloss Hidden Markov models Iterative methods iterative training Markov chains Modules multimodal fusion Neural networks Optical flow (image analysis) Optimization Recognition Recurrent neural networks Sentences sequence learning Sign language Training Videos |
title | A Deep Neural Framework for Continuous Sign Language Recognition by Iterative Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Neural%20Framework%20for%20Continuous%20Sign%20Language%20Recognition%20by%20Iterative%20Training&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Cui,%20Runpeng&rft.date=2019-07-01&rft.volume=21&rft.issue=7&rft.spage=1880&rft.epage=1891&rft.pages=1880-1891&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2018.2889563&rft_dat=%3Cproquest_RIE%3E2247924953%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247924953&rft_id=info:pmid/&rft_ieee_id=8598757&rfr_iscdi=true |