Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia
It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2114 |
creator | Purwanto Sunardi Julfia, Fenty Tristanti Paramananda, Aditya |
description | It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models. |
doi_str_mv | 10.1063/1.5112481 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2247170631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2247170631</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-28e431a4664462f239fee7ce919e8c7f764d23fa0ef976cf9fd6f137f2cdd25d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKsH_0HAm7g1k2ST3WMpagsVwQd4C3GTQPpI1mxa6L93SyvePA3DfPP6ELoGMgIi2D2MSgDKKzhBAyhLKKQAcYoGhNS8oJx9nqOLrlsQQmspqwFaTndfyRu8jsaucHR4_Dp7HhcrH6xOOCcbfmsu9nncJN9lrFPyW73qcJus8U32MRwpH_DbJumlTlnjic-7OzwLJgbbeX2JzlzfZK-OcYg-Hh_eJ9Ni_vI0m4znRUurKhe0spyB5kJwLqijrHbWysbWUNuqkU4KbihzmlhXS9G42hnhgElHG2NoadgQ3Rzmtil-b2yX1aK_O_QrFaVcguxFQU_dHqiu8VnvX1Bt8muddgqI2stUoI4y_4O3Mf2BqjWO_QBa73Xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2247170631</pqid></control><display><type>conference_proceeding</type><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><source>AIP Journals Complete</source><creator>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya</creator><contributor>Hidayati, Nurul ; Prasetyo, Hari ; Listyawan, Anto Budi ; Riyadi, Tri Widodo Besar ; Setiawan, Wisnu ; Nugroho, Munajat Tri ; Hidayati, Nur</contributor><creatorcontrib>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya ; Hidayati, Nurul ; Prasetyo, Hari ; Listyawan, Anto Budi ; Riyadi, Tri Widodo Besar ; Setiawan, Wisnu ; Nugroho, Munajat Tri ; Hidayati, Nur</creatorcontrib><description>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5112481</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Arrivals ; Autoregressive models ; Economic recovery ; Smoothing</subject><ispartof>AIP conference proceedings, 2019, Vol.2114 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5112481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Hidayati, Nurul</contributor><contributor>Prasetyo, Hari</contributor><contributor>Listyawan, Anto Budi</contributor><contributor>Riyadi, Tri Widodo Besar</contributor><contributor>Setiawan, Wisnu</contributor><contributor>Nugroho, Munajat Tri</contributor><contributor>Hidayati, Nur</contributor><creatorcontrib>Purwanto</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Julfia, Fenty Tristanti</creatorcontrib><creatorcontrib>Paramananda, Aditya</creatorcontrib><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><title>AIP conference proceedings</title><description>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</description><subject>Arrivals</subject><subject>Autoregressive models</subject><subject>Economic recovery</subject><subject>Smoothing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEQgIMoWKsH_0HAm7g1k2ST3WMpagsVwQd4C3GTQPpI1mxa6L93SyvePA3DfPP6ELoGMgIi2D2MSgDKKzhBAyhLKKQAcYoGhNS8oJx9nqOLrlsQQmspqwFaTndfyRu8jsaucHR4_Dp7HhcrH6xOOCcbfmsu9nncJN9lrFPyW73qcJus8U32MRwpH_DbJumlTlnjic-7OzwLJgbbeX2JzlzfZK-OcYg-Hh_eJ9Ni_vI0m4znRUurKhe0spyB5kJwLqijrHbWysbWUNuqkU4KbihzmlhXS9G42hnhgElHG2NoadgQ3Rzmtil-b2yX1aK_O_QrFaVcguxFQU_dHqiu8VnvX1Bt8muddgqI2stUoI4y_4O3Mf2BqjWO_QBa73Xf</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Purwanto</creator><creator>Sunardi</creator><creator>Julfia, Fenty Tristanti</creator><creator>Paramananda, Aditya</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190626</creationdate><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><author>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-28e431a4664462f239fee7ce919e8c7f764d23fa0ef976cf9fd6f137f2cdd25d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrivals</topic><topic>Autoregressive models</topic><topic>Economic recovery</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purwanto</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Julfia, Fenty Tristanti</creatorcontrib><creatorcontrib>Paramananda, Aditya</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purwanto</au><au>Sunardi</au><au>Julfia, Fenty Tristanti</au><au>Paramananda, Aditya</au><au>Hidayati, Nurul</au><au>Prasetyo, Hari</au><au>Listyawan, Anto Budi</au><au>Riyadi, Tri Widodo Besar</au><au>Setiawan, Wisnu</au><au>Nugroho, Munajat Tri</au><au>Hidayati, Nur</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</atitle><btitle>AIP conference proceedings</btitle><date>2019-06-26</date><risdate>2019</risdate><volume>2114</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5112481</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2114 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2247170631 |
source | AIP Journals Complete |
subjects | Arrivals Autoregressive models Economic recovery Smoothing |
title | Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20model%20of%20ARIMA-linear%20trend%20model%20for%20tourist%20arrivals%20prediction%20model%20in%20Surakarta%20City,%20Indonesia&rft.btitle=AIP%20conference%20proceedings&rft.au=Purwanto&rft.date=2019-06-26&rft.volume=2114&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5112481&rft_dat=%3Cproquest_scita%3E2247170631%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247170631&rft_id=info:pmid/&rfr_iscdi=true |