Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia

It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Purwanto, Sunardi, Julfia, Fenty Tristanti, Paramananda, Aditya
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2114
creator Purwanto
Sunardi
Julfia, Fenty Tristanti
Paramananda, Aditya
description It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.
doi_str_mv 10.1063/1.5112481
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2247170631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2247170631</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-28e431a4664462f239fee7ce919e8c7f764d23fa0ef976cf9fd6f137f2cdd25d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKsH_0HAm7g1k2ST3WMpagsVwQd4C3GTQPpI1mxa6L93SyvePA3DfPP6ELoGMgIi2D2MSgDKKzhBAyhLKKQAcYoGhNS8oJx9nqOLrlsQQmspqwFaTndfyRu8jsaucHR4_Dp7HhcrH6xOOCcbfmsu9nncJN9lrFPyW73qcJus8U32MRwpH_DbJumlTlnjic-7OzwLJgbbeX2JzlzfZK-OcYg-Hh_eJ9Ni_vI0m4znRUurKhe0spyB5kJwLqijrHbWysbWUNuqkU4KbihzmlhXS9G42hnhgElHG2NoadgQ3Rzmtil-b2yX1aK_O_QrFaVcguxFQU_dHqiu8VnvX1Bt8muddgqI2stUoI4y_4O3Mf2BqjWO_QBa73Xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2247170631</pqid></control><display><type>conference_proceeding</type><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><source>AIP Journals Complete</source><creator>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya</creator><contributor>Hidayati, Nurul ; Prasetyo, Hari ; Listyawan, Anto Budi ; Riyadi, Tri Widodo Besar ; Setiawan, Wisnu ; Nugroho, Munajat Tri ; Hidayati, Nur</contributor><creatorcontrib>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya ; Hidayati, Nurul ; Prasetyo, Hari ; Listyawan, Anto Budi ; Riyadi, Tri Widodo Besar ; Setiawan, Wisnu ; Nugroho, Munajat Tri ; Hidayati, Nur</creatorcontrib><description>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5112481</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Arrivals ; Autoregressive models ; Economic recovery ; Smoothing</subject><ispartof>AIP conference proceedings, 2019, Vol.2114 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5112481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Hidayati, Nurul</contributor><contributor>Prasetyo, Hari</contributor><contributor>Listyawan, Anto Budi</contributor><contributor>Riyadi, Tri Widodo Besar</contributor><contributor>Setiawan, Wisnu</contributor><contributor>Nugroho, Munajat Tri</contributor><contributor>Hidayati, Nur</contributor><creatorcontrib>Purwanto</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Julfia, Fenty Tristanti</creatorcontrib><creatorcontrib>Paramananda, Aditya</creatorcontrib><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><title>AIP conference proceedings</title><description>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</description><subject>Arrivals</subject><subject>Autoregressive models</subject><subject>Economic recovery</subject><subject>Smoothing</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEQgIMoWKsH_0HAm7g1k2ST3WMpagsVwQd4C3GTQPpI1mxa6L93SyvePA3DfPP6ELoGMgIi2D2MSgDKKzhBAyhLKKQAcYoGhNS8oJx9nqOLrlsQQmspqwFaTndfyRu8jsaucHR4_Dp7HhcrH6xOOCcbfmsu9nncJN9lrFPyW73qcJus8U32MRwpH_DbJumlTlnjic-7OzwLJgbbeX2JzlzfZK-OcYg-Hh_eJ9Ni_vI0m4znRUurKhe0spyB5kJwLqijrHbWysbWUNuqkU4KbihzmlhXS9G42hnhgElHG2NoadgQ3Rzmtil-b2yX1aK_O_QrFaVcguxFQU_dHqiu8VnvX1Bt8muddgqI2stUoI4y_4O3Mf2BqjWO_QBa73Xf</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Purwanto</creator><creator>Sunardi</creator><creator>Julfia, Fenty Tristanti</creator><creator>Paramananda, Aditya</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190626</creationdate><title>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</title><author>Purwanto ; Sunardi ; Julfia, Fenty Tristanti ; Paramananda, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-28e431a4664462f239fee7ce919e8c7f764d23fa0ef976cf9fd6f137f2cdd25d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrivals</topic><topic>Autoregressive models</topic><topic>Economic recovery</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purwanto</creatorcontrib><creatorcontrib>Sunardi</creatorcontrib><creatorcontrib>Julfia, Fenty Tristanti</creatorcontrib><creatorcontrib>Paramananda, Aditya</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purwanto</au><au>Sunardi</au><au>Julfia, Fenty Tristanti</au><au>Paramananda, Aditya</au><au>Hidayati, Nurul</au><au>Prasetyo, Hari</au><au>Listyawan, Anto Budi</au><au>Riyadi, Tri Widodo Besar</au><au>Setiawan, Wisnu</au><au>Nugroho, Munajat Tri</au><au>Hidayati, Nur</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia</atitle><btitle>AIP conference proceedings</btitle><date>2019-06-26</date><risdate>2019</risdate><volume>2114</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is important to predict the tourist arrival to help the government in making appropriate decisions. Many models have been proposed to estimate the number of tourist arrivals in the future. An autoregressive integrated moving average (ARIMA) model, linear trend and Holt-Winter triple exponential smoothing are among successful models used in various fields. In the present study, we propose a hybrid model that combines ARIMA and linear trend model as a tourist arrivals prediction model. Experiment results show that the hybrid model produces better prediction performance compared to ARIMA, linear trend and Holt-Winter triple exponential smoothing models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5112481</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2114 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2247170631
source AIP Journals Complete
subjects Arrivals
Autoregressive models
Economic recovery
Smoothing
title Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20model%20of%20ARIMA-linear%20trend%20model%20for%20tourist%20arrivals%20prediction%20model%20in%20Surakarta%20City,%20Indonesia&rft.btitle=AIP%20conference%20proceedings&rft.au=Purwanto&rft.date=2019-06-26&rft.volume=2114&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5112481&rft_dat=%3Cproquest_scita%3E2247170631%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247170631&rft_id=info:pmid/&rfr_iscdi=true